K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

\(a,x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x+1=x^2+2x+1\)

\(\Leftrightarrow x^2+2x+1-x-1\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\left(+\right)x=0\)

\(\left(+\right)x+1=0\Leftrightarrow x=-1\)

Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)

\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)

\(\left(+\right)x=0\)

\(\left(+\right)x^2+1=0\)

Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)

\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm 

Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)

17 tháng 6 2016

cảm ơn bn j đó nha :))))

22 tháng 7 2016

a)\(x\left(x+2\right)-3x-6=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x-3\right)\left(x+2\right)=0\)

=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

b)\(x^3+3x^2+3x-1-3x^2-3x=0\)

=>\(x^3-1=0\)

=>x3=1

=>x=1

29 tháng 9 2018

làm cái này dài lắm nên mk sẽ làm riêng từng bài nha! 
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)

                                                                            \(=4x^2-12x+9-4x^2+4\)

                                                                              \(=-12x+13\)

  \(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)

                                                                                 \(=-2x+1\)

29 tháng 9 2018

1, rút gọn :

(2x-3)2-4(x+1)(x-1)

=(2x-3)-4(x2-1)

4 tháng 8 2017

a) => M = -(X2+8X-5) 
   <=> M=-( X2+2xXx4+42-42-5)
   <=> M=-[(X+4)2-21]
=> M=21-(x+4)2 =< 21
vậy MAX M= 21 khi X+4 =0 => x=-4
các bài còn lại tương tự ~~~

4 tháng 8 2017

a, \(M=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+2.x.4+16-21\right)\)

\(=-\left(x+4\right)^2+21\)

\(\Rightarrow M\le21\)

Dấu ''='' xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy giá trị lớn nhất của M là 21 khi x = -4

b, \(N=-3x\left(x+3\right)-7\)

\(=-3x^2-9x-7\)

\(=-3\left(x^2+3x+\frac{7}{3}\right)\)

\(=-3\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{12}\right)\)

\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow N\le\frac{-1}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy giá trị lớn nhất của N là \(\frac{-1}{4}\Leftrightarrow x=\frac{-3}{2}\)

c,\(P=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-2.x.2+4-7\right)\)

\(=-\left(x-2\right)^2+7\)

\(\Rightarrow P\le7\)

Dấu ''='' xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy giá trị lớn nhất của P là 7 khi x = 2

d, \(E=9x-3x^2\)

\(=-3\left(x^2-3x\right)\)

\(=-3\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

\(\Rightarrow E\le\frac{27}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy giá trị lớn nhất của E là \(\frac{27}{4}\Leftrightarrow x=\frac{3}{2}\)

5 tháng 10 2020

giúp mình mọi người ơiii

5 tháng 10 2020

Bài 1.

A = 2x2 - x + 4 = 2( x2 - 1/2x + 1/16 ) + 31/8 = 2( x - 1/4 )2 + 31/8 ≥ 31/8 ∀ x

Dấu "=" xảy ra khi x = 1/4

=> MinA = 31/8 <=> x = 1/4

Bài 2.

A = -x2 + 3x + 2 = -( x2 - 3x + 9/4 ) + 17/4 = -( x - 3/2 )2 + 17/4 ≤ 17/4 ∀ x

Dấu "=" xảy ra khi x = 3/2

=> MaxA = 17/4 <=> x = 3/2

B = 3x2 + x - 5 = 3( x2 + 1/3x + 1/36 ) - 61/12 = 3( x + 1/6 )2 - 61/12 ≥ -61/12 ∀ x

Dấu "=" xảy ra khi x = -1/6

=> MinB = -61/12 <=> x = -1/6

C = x2 + 3/2x - 5 = ( x2 + 3/2x + 9/16 ) - 89/16 = ( x + 3/4 )2 - 89/16 ≥ -89/16 ∀ x

Dấu "=" xảy ra khi x = -3/4

=> MinC = -89/16 <=> x= -3/4

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

9 tháng 7 2016

chữ bị lỗi .... ~0~

9 tháng 7 2016

1/

a/  \(x^2+y^2=x^2+y^2+2xy-2xy\)\(=\left(x+y\right)^2-2xy\)

thay vào: \(\left(x+y\right)^2-2xy=a^2-2b\)

b/ \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+y^2+2xy-xy-2xy\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

thay vào:  \(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=a\left(a^2-3b\right)\)

c/ \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)

thay vào: \(\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)