(32017 +32016+32015)chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 3+3^2 + 3^3 +...+ 3^2016
= (3+3^2+3^3) +...+(3^2014+3^2015+3^2016)
=3(1+3+3^2) +.....+3^2014(1+3+32)
=13 ( 3+...+3^2014 ) chia hết cho 13
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$
$=1+13(3+3^4+...+3^{2014})$
$\Rightarrow A-1\vdots 13(1)$
Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$
$=1+40(3+....+3^{2013})$
$\Rightarrow A-1\vdots 5(2)$
Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$
$\Rightarrow A$ chia $65$ dư $1$
b: \(\Leftrightarrow n\left(n-1\right)-1⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{2;0\right\}\)
a: \(A=3\left(1+3^2+3^4\right)+...+3^{2011}\left(1+3^2+3^4\right)\)
\(=91\left(3+...+3^{2011}\right)⋮13\)
\(A=3\left(1+3^2+3^4+3^6\right)+...+3^{2009}\left(1+3^2+3^4+3^6\right)\)
\(=820\left(3+...+3^{2009}\right)⋮41\)
Bài này làm từng câu thôi :
\(A=1+3^1+3^2+.......+3^{2014}+3^{2015}\)
\(\Rightarrow3A=3+3^2+3^3+......+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+......+3^{2016}\right)-\left(1+3^1+.....+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\)
\(\Rightarrow A=\frac{3^{2016}-1}{2}\)
Đề sai nhé bạn như vầy mới đúng : (33017 +32016 - 32015)chia hết cho 11
Ta có : 33017 +32016 - 32015
= 32015(32 + 3 - 1)
= 32015 (9 + 3 - 1)
= 32015 . 11 \(⋮11\)