x1−12017=x2−22016=x3−32016=...=x2017−20171x1−12017=x2−22016=x3−32016=...=x2017−20171 ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

cái chỗ x3-3/2016 phải là x3-3/2015, viết lộn

27 tháng 10 2015

chả hỉu gì cả 

Làm ơn l-i-k-e cho mik đi :D

27 tháng 10 2015

\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1+x_2+x_3-1-2-3}{1+2+3}=\frac{24}{6}=4\) (Áp dụng dãy tỉ số bằng nhau)

===> x1 = 4*3+1=13

x2=4*2+2=10

x3 = 4*1+3=7

Từ đó suy ra được ............................................................

11 tháng 6 2016

Bỏ x4 đi nhé bn

Theo t/c dãy tỉ số=nhau:

\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1-1+x_2-2+x_3-3}{3+2+1}\)\(=\frac{\left(x_1+x_2+x_3\right)-\left(1+2+3\right)}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)

=>x1-1=4.3=12=>x1=13

x2-2=4.2=8=>x2=10

x3-3=4=>x3=7

 

 

11 tháng 6 2016

Uk mik cảm ơn trong lúc chờ bạn thì mik giải được rồi nhưng dù sao cũng cảm ơn

 

22 tháng 11 2017

Theo TCDTSBN ta có:

\(\frac{x1}{x2}=\frac{x2}{x3}=....=\frac{x2008}{x2009}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\)

Ta có: \(\frac{x1}{x2}=\frac{x1+x2+...+x2008}{x2+x3+....+x2009}\left(1\right)\)

\(\frac{x2}{x3}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\left(2\right)\)

............

\(\frac{x2008}{x2009}=\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\left(2008\right)\)

Nhân (1),(2),....(2008) vế với vế:

\(\frac{x1}{x2}\cdot\frac{x2}{x3}\cdot\cdot\cdot\cdot\frac{x2008}{x2009}=\frac{x1}{x2009}=\left(\frac{x1+x2+...+x2008}{x2+x3+...+x2009}\right)^{2008}\)

Vậy...

22 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=...=\frac{x_{2008}}{x_{2009}}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

=> \(\frac{x_1}{x_2}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

\(\frac{x_2}{x_3}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

\(\frac{x_3}{x_4}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

..........

\(\frac{x_{2008}}{x_{2009}}=\frac{x_1+x_2+x_3+...+x_{2008}}{x_2+x_3+x_4+...+x_{2009}}\)

Như vậy nhân các vế lại ta có \(\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.....\frac{x_{2008}}{x_{2009}}=\frac{x_1.x_2.x_3...x_{2008}}{x_2.x_3.x_4....x_{2009}}=\frac{x_1}{x_{2009}}\) (đpcm)