C=4+4^3+4^5+4^7+......+4 ^2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =7^3-11^2
=343-121=222
b: =3^5-5^3+144
=243-125+144
=243+19
=262
c: =4^2-4*3+25*3
=63+16=79
d: =14+9*2-25
=-11+18=7
1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)
\(a,\dfrac{6}{11}+6+\dfrac{5}{7}=\dfrac{42+462+55}{77}=\dfrac{559}{77}\)
\(b,\dfrac{9}{8}\times\dfrac{3}{12}:\dfrac{5}{9}=\dfrac{9}{8}\times\dfrac{3}{12}\times\dfrac{9}{5}=\dfrac{243}{480}=\dfrac{81}{160}\)
\(c,\dfrac{8}{7}:4+2=\dfrac{8}{7}\times\dfrac{1}{4}+2=\dfrac{8}{28}+2=\dfrac{2}{7}+2=\dfrac{16}{7}\)
\(d,\dfrac{3}{5}+4:\dfrac{6}{4}=\dfrac{3}{5}+4\times\dfrac{4}{6}=\dfrac{3}{5}+\dfrac{8}{3}=\dfrac{49}{15}\)
a: =-3/4-1/4+2/7+5/7+2023/2024
=-1+1+2023/2024=2023/2024
b: 2/3x=2/7
=>x=2/7:2/3=3/7
c; =>2/3x=1/10+1/2=1/10+5/10=6/10=3/5
=>x=3/5:2/3=3/5*3/2=9/10
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5
Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)
=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)
=> 4N= 5N - N =1 - 1/5^k
=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)
Thay vào biểu thức M, ta có:
M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)
=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023
=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4
=> M < 5/16 < 1/3
Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
1-2+3-4+5-6+7-8+...+2023-2024
=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)
=−1+(−1)+(−1)+(−1)+...+(−1)=−1+(−1)+(−1)+(−1)+...+(−1)
=−1.1012=−1.1012
=−1012=−1012
1-2+3-4+5-6+ ... +2023-2024
= (-1) + (-1) + ... + (-1) (1012 số)
= (-1).1012
= -1012
A>1√2+√3+1√4+√5+1√6+√7+...+1√2024+√2025A>12+3+14+5+16+7+...+12024+2025
⇒2A>1√1+√2+1√2+√3+1√3+√4+1√4+√5+...+1√2024+√2025⇒2A>11+2+12+3+13+4+14+5+...+12024+2025
⇒2A>√2−√1+√3−√2+√4−√3+...+√2025−√2024⇒2A>2−1+3−2+4−3+...+2025−2024
⇒2A>√2025−√1=44⇒2A>2025−1=44
⇒A>22⇒A>22
Để tính tổng C = 4 + 4^3 + 4^5 + 4^7 + ... + 4^2023, ta thấy rằng mỗi số hạng trong dãy này là lũy thừa của 4 với số mũ chẵn.
Ta có công thức tổng của dãy số hạng theo cấp số nhân khi số mũ không đổi:
S = a * (r^n - 1) / (r - 1)
Trong đó:
Áp dụng công thức, ta có:
C = 4 * (4^1011 - 1) / (4 - 1)
Simplifying the equation, we get:
C = 4 * (4^1011 - 1) / 3
Vì việc tính toán dãy này tương đối phức tạp và kết quả sẽ rất lớn, việc tính toán chính xác yêu cầu sử dụng công cụ tính toán hoặc máy tính.
chết cha lỡ ghi vài câu tiếng anh rùi sửa giúp mình nha