K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

\(x^2-4x+1=0\Leftrightarrow\left(x^2-4x+4\right)-3=0\Leftrightarrow\left(x-2\right)^2-3=0\Leftrightarrow\left(x-2\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{3}\\x-2=\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)

rồi bạn thay x ào A mà tính

6 tháng 8 2017

Biết :   x2 - 4x + 1 = 0  Tính giá trị  \(A=\frac{x^2-x+1}{x}\)

Ta biến đổi : \(A=\frac{x^2-x+1}{x}=\frac{\left(x^2-4x+1\right)+3x}{x}=\frac{0+3x}{x}=3\)

a)f(0) = 02 - 4.0 + 3= 0 - 0 + 3 = 3

f(1) = 12 - 4.1 +3 = 1 - 4 +3 = 0

f(-1) = (-1)2 - 4.(-1) +3 = 1 - (-4) +3 = 8

f(3)= 32 - 4.3 +3 = 9 - 12 + 3 = 0

vậy giá trị 1 và 3 là nghiệm của đa thức f(x)

b)thay x = -1 vào đa thức N(x) ta được:

N(x) = a. (-1)3 - 2a.(-1) - 3 = 0

⇔⇔ a. (-1) - 2a.(-1) = 3

⇔⇔ (- a) + 2a = 3 ⇒⇒ a = 3

꧁༺๖ۣ๖ۣۜSkyღ๖ۣۜlạnh☯๖ۣۜlùngɠɠ༻꧂

4 tháng 3 2022

a, \(P\left(x\right)=x^2+4x+3\)

Thay x = 0 => P(x) = 3 

Thay x = 1 => P(x) = 8 

Thay x = 3 => P(x) = 9 + 12 + 3 = 24 

b, \(f\left(x\right)=x^2+4x+3=0\)

\(\Leftrightarrow\left(x+2\right)^2-1=0\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\Leftrightarrow x=-1;x=-3\)

9 tháng 6 2017

a,x khác +_1

b, rút gọn là xong

5 tháng 6 2021

Lộn câu rồi bạn ơi..

5 tháng 12 2023

a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)

= x³ - 125 - x² + 4 + x³ + x² + 4x

= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)

= 2x³ + 4x - 121

b) Tại x = -2 ta có:

A = 2.(-2)³ + 4.(-2) - 121

= 2.(-8) - 8 - 121

= -16 - 129

= -145

c) x² - 1 = 0

x² = 1

x = -1; x = 1

*) Tại x = -1 ta có:

A = 2.(-1)³ + 4.(-1) - 121

= 2.(-1) - 4 - 121

= -2 - 125

= -127

*) Tại x = 1 ta có:

A = 2.1³ + 4.1 - 121

= 2.1 + 4 - 121

= 2 - 117

= -115

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

23 tháng 5 2017

\(A=\frac{x^2-x+1}{x}=\frac{x^2-4x+1}{x}+\frac{3x}{x}\)

     \(=\frac{0}{x}+3=0+3=3\)