K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

\(x^2-4x+1=0\Leftrightarrow\left(x^2-4x+4\right)-3=0\Leftrightarrow\left(x-2\right)^2-3=0\Leftrightarrow\left(x-2\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{3}\\x-2=\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=\sqrt{3}+2\end{cases}}\)

rồi bạn thay x ào A mà tính

6 tháng 8 2017

Biết :   x2 - 4x + 1 = 0  Tính giá trị  \(A=\frac{x^2-x+1}{x}\)

Ta biến đổi : \(A=\frac{x^2-x+1}{x}=\frac{\left(x^2-4x+1\right)+3x}{x}=\frac{0+3x}{x}=3\)

5 tháng 6 2021

Lộn câu rồi bạn ơi..

22 tháng 11 2021

\(a,ĐK:x\ne\pm2\\ A=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\\ ĐK:x\ne-1;x\ne-2\\ B=\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ b,x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \forall x=0\Leftrightarrow A=\dfrac{1}{0-2}=-\dfrac{1}{2}\\ \forall x=-1\Leftrightarrow A=\dfrac{1}{-1-2}=-\dfrac{1}{3}\)

\(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ \Leftrightarrow B=\dfrac{1}{0+2}=\dfrac{1}{2}\)

10 tháng 8 2020

a) Thay \(x=25\)vào B: 

=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)

b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé

10 tháng 8 2020

bạn giúp mình đc ko

NV
19 tháng 9 2019

a/ Bạn tự giải

b/ \(B=\frac{x-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)

c/ \(P=AB=\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)=\frac{\sqrt{x}+3}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)

Do \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\)

\(\Rightarrow P\le1+\frac{1}{2}=\frac{3}{2}\Rightarrow P_{max}=\frac{3}{2}\) khi \(x=0\)