giá trị lớn nhất của biểu thức 3 x ( 6 - | y -1 | ) - ( X - 2 )\(^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
\(A=3\left[6-\left|y-1\right|-\left(x-2\right)^2\right]\)
\(=18-3\left|y-1\right|-3\left(x-2\right)^2\)
Ta thấy:\(\begin{cases}\left|y-1\right|\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}-3\left|y-1\right|\le0\\-3\left(x-2\right)^2\le0\end{cases}\)
\(\Rightarrow-3\left|y-1\right|-3\left(x-2\right)^2\le0\)
\(\Rightarrow18-3\left|y-1\right|-3\left(x-2\right)^2\le18\)
\(\Rightarrow A\le18\)
Dấu "=" xảy ra khi \(\Rightarrow\begin{cases}-3\left|y-1\right|=0\\-3\left(x-2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}\left|y-1\right|=0\\\left(x-2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}y-1=0\\x-2=0\end{cases}\)\(\Rightarrow\begin{cases}y=1\\x=2\end{cases}\)
Vậy \(Max_A=18\) khi \(\begin{cases}y=1\\x=2\end{cases}\)
Đặt
A=\(3\left(6-\left|y-1\right|\right)-\left(x-2\right)^2=18-3\left|y-1\right|-\left(x-2\right)^2=18-\left[3\left|y-1\right|+\left(x-2\right)^2\right]\)
Vì \(\left|y-1\right|\ge0\Rightarrow3\left|y-1\right|\ge0;\left(x-2\right)^2\ge0\) với mọi x;y
=>\(3\left|y-1\right|+\left(x-2\right)^2\ge0\)=>\(A=18-\left[3\left|y-1\right|+\left(x-2\right)^2\right]\le18\)
Dấu "=" xảy ra khi \(\left|y-1\right|=0;\left(x-2\right)^2=0\)=> y-1=0;x-2=0 =>y=1;x=2
Vậy Amax=18 khi x=2;y=1
nhớ trình bày rõ ràng nhé , ai nhanh k cho