Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
A=\(3\left(6-\left|y-1\right|\right)-\left(x-2\right)^2=18-3\left|y-1\right|-\left(x-2\right)^2=18-\left[3\left|y-1\right|+\left(x-2\right)^2\right]\)
Vì \(\left|y-1\right|\ge0\Rightarrow3\left|y-1\right|\ge0;\left(x-2\right)^2\ge0\) với mọi x;y
=>\(3\left|y-1\right|+\left(x-2\right)^2\ge0\)=>\(A=18-\left[3\left|y-1\right|+\left(x-2\right)^2\right]\le18\)
Dấu "=" xảy ra khi \(\left|y-1\right|=0;\left(x-2\right)^2=0\)=> y-1=0;x-2=0 =>y=1;x=2
Vậy Amax=18 khi x=2;y=1
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
a)A=4-|2x+6|-|y+5|
Vì |2x+6| luôn lớn hơn hoặc bằng 0 với mọi x
|y+5| luôn lớn hơn hoặc bằng 0 với mọi y
=>|2x+6|-|y+5| luôn lớn hơn hoặc bằng 0 với mọi giá trị của x,y
=>4-|2x+6|-|y+5| luôn nhỏ hơn hoặc bằng 4
Vậy GTNN của biểu thức A là 4
Dấu bàng xảy ra khi |2x+6|=0 và |y+5|=0
Với |2x+6|=0 =>2x+6=0 =>2x=-6 =>x=-3
Với |y+5|=0 =>y+5=0 =>y=-5
Vậy Bieur thức A đạt GTNN là 4 khi x=-3;y=-5
b)B=12-|x-1|-|y+2|
Vì |x-1| luôn lớn hơn hoặc bằng 0 với moi x
|y+2| luôn lớn hơn hoặc bằng 0 với mọi y
=>|x-1|-|y+2| luôn nhỏ hơn hoặc bằng 0 với mọi giá trị của x,y
=>12-|x-1|-|y+2| luôn nhỏ hơn hoặc bằng 12
Vậy GTNN của biểu thức B là 12
Dấu bằng xảy ra khi |x-1|=0 và |y+2|=0
Với |x-1|=0 =>x-1=0 =>x=1
Với |y+2|=0 =>y+2=0 =>y=-2
Vậy biểu thức B đạt GTNN là 12 khi x=1 và y=-2
\(A=3\left[6-\left|y-1\right|-\left(x-2\right)^2\right]\)
\(=18-3\left|y-1\right|-3\left(x-2\right)^2\)
Ta thấy:\(\begin{cases}\left|y-1\right|\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}-3\left|y-1\right|\le0\\-3\left(x-2\right)^2\le0\end{cases}\)
\(\Rightarrow-3\left|y-1\right|-3\left(x-2\right)^2\le0\)
\(\Rightarrow18-3\left|y-1\right|-3\left(x-2\right)^2\le18\)
\(\Rightarrow A\le18\)
Dấu "=" xảy ra khi \(\Rightarrow\begin{cases}-3\left|y-1\right|=0\\-3\left(x-2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}\left|y-1\right|=0\\\left(x-2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}y-1=0\\x-2=0\end{cases}\)\(\Rightarrow\begin{cases}y=1\\x=2\end{cases}\)
Vậy \(Max_A=18\) khi \(\begin{cases}y=1\\x=2\end{cases}\)
3