Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
\(A=3\left[6-\left|y-1\right|-\left(x-2\right)^2\right]\)
\(=18-3\left|y-1\right|-3\left(x-2\right)^2\)
Ta thấy:\(\begin{cases}\left|y-1\right|\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\begin{cases}-3\left|y-1\right|\le0\\-3\left(x-2\right)^2\le0\end{cases}\)
\(\Rightarrow-3\left|y-1\right|-3\left(x-2\right)^2\le0\)
\(\Rightarrow18-3\left|y-1\right|-3\left(x-2\right)^2\le18\)
\(\Rightarrow A\le18\)
Dấu "=" xảy ra khi \(\Rightarrow\begin{cases}-3\left|y-1\right|=0\\-3\left(x-2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}\left|y-1\right|=0\\\left(x-2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}y-1=0\\x-2=0\end{cases}\)\(\Rightarrow\begin{cases}y=1\\x=2\end{cases}\)
Vậy \(Max_A=18\) khi \(\begin{cases}y=1\\x=2\end{cases}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
Đặt
A=\(3\left(6-\left|y-1\right|\right)-\left(x-2\right)^2=18-3\left|y-1\right|-\left(x-2\right)^2=18-\left[3\left|y-1\right|+\left(x-2\right)^2\right]\)
Vì \(\left|y-1\right|\ge0\Rightarrow3\left|y-1\right|\ge0;\left(x-2\right)^2\ge0\) với mọi x;y
=>\(3\left|y-1\right|+\left(x-2\right)^2\ge0\)=>\(A=18-\left[3\left|y-1\right|+\left(x-2\right)^2\right]\le18\)
Dấu "=" xảy ra khi \(\left|y-1\right|=0;\left(x-2\right)^2=0\)=> y-1=0;x-2=0 =>y=1;x=2
Vậy Amax=18 khi x=2;y=1
nhớ trình bày rõ ràng nhé , ai nhanh k cho