K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2023

M(\(x\)) = \(x^3\) + 2

Nghiệm của M(\(x\)) là giá trị của \(x\) để M(\(x\)) = 0 

Vậy \(x^3\) + 2 = 0

      \(x^3\) = -2

      \(x\) = -\(\sqrt[3]{2}\) 

20 tháng 3 2021

a, Khi $f(x)$ có nghiệm là $-4$ thì ta suy ra

$f(-4)=0$ hay $(m-2).(-4)+2m-3=0$

$⇔-2m=-5$

$⇔m=\dfrac{5}{2}$

b, Khi $f(x)$ có nghiệm nguyên thì tức là
$f(x)=0;x∈Z$

hay $(m-2)x+2m-3=0$

$⇔(m-2)x=3-2m$

với $m=2$ thì ta suy ra $0=1$ loại
$m \neq 2$ suy ra $x=\dfrac{3-2m}{m-2}$

hay $x=\dfrac{-1-2(m-2)}{m-2}=\dfrac{-1}{m-2}-2$

Mà $x∈Z;-2∈Z$

Nên $\dfrac{-1}{m-2}∈Z$

Hay $m-2∈Ư(-1)$

suy ra \(m-2∈{-1;1}\)

nên $m=1$ hoặc $m=3$

Với $m=1$ suy ra $x=-3$

$m=3$ suy ra $x=-3$

Vậy $m=1$ hoặc $m=3$ thì đa thức cho có nghiệm nguyên $x=-3$

 

a: M(x)=-4x^4+x+1+x^2-x=-4x^4+x^2+1

b: M(x)=0

=>-4x^4+x^2+1=0

=>\(x=\pm\sqrt{\dfrac{1+\sqrt{17}}{8}}\)

17 tháng 4 2016

trời đất
ai tl hộ mình vs

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

23 tháng 7 2021

còn cái nịt

c, 

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)\\ =m^2+6m+9-m^2-3\\ =6m+6\) 

Phương trình có nghiệm kép

\(\Delta'=0\\ 6m+6=0\\ \Leftrightarrow m=-1\) 

Với m = -1

\(\Rightarrow x^2-4x+4=0\\ \Leftrightarrow x=2\)