Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:
\(\left(-2\right)^2-2m+2=0\)
\(\Rightarrow4-2m+2=0\)
\(\Rightarrow6-2m=0\)
\(\Rightarrow2m=6\)
\(\Rightarrow m=3\)
b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)
a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)
\(\Leftrightarrow24-3m=0\)
\(\Leftrightarrow m=8\)
b, Với m = 8 thì \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Vậy \(S=\left\{3;5\right\}\)
a) ( - 2 )2 + m . ( - 2 ) + 2 = 0 \(\Leftrightarrow\)m = 3
b) f(x) = x2 + 3x + 2
f(x) có tổng bằng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận (-1) làm một nghiệm. Như vậy f(x) có 2 nghiệm là (-2) (Theo câu a) và ( -1) ngoài ra không còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là 2 nghiệm
Do đó tập hợp các nghiệm của f(x) là S = ( -1; -2 )
a, Khi $f(x)$ có nghiệm là $-4$ thì ta suy ra
$f(-4)=0$ hay $(m-2).(-4)+2m-3=0$
$⇔-2m=-5$
$⇔m=\dfrac{5}{2}$
b, Khi $f(x)$ có nghiệm nguyên thì tức là
$f(x)=0;x∈Z$
hay $(m-2)x+2m-3=0$
$⇔(m-2)x=3-2m$
với $m=2$ thì ta suy ra $0=1$ loại
$m \neq 2$ suy ra $x=\dfrac{3-2m}{m-2}$
hay $x=\dfrac{-1-2(m-2)}{m-2}=\dfrac{-1}{m-2}-2$
Mà $x∈Z;-2∈Z$
Nên $\dfrac{-1}{m-2}∈Z$
Hay $m-2∈Ư(-1)$
suy ra \(m-2∈{-1;1}\)
nên $m=1$ hoặc $m=3$
Với $m=1$ suy ra $x=-3$
$m=3$ suy ra $x=-3$
Vậy $m=1$ hoặc $m=3$ thì đa thức cho có nghiệm nguyên $x=-3$