tìm đkxđ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì các số trong căn bậc `2` không âm nên căn thức được xác định.
2TH (mik dự đoán)
TH1: Nếu là \(\sqrt{x}-1\) => ĐKXĐ: x \(\ge\) 0
TH2: Nếu là \(\sqrt{x-1}\) => ĐKXĐ: \(x\ge1\)
ĐKXĐ: x<>0; x<>2; x<>1; x<>-1
\(Q=1+\dfrac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{x\left(x^2-x-1\right)}{x^2\left(x-2\right)}\)
\(=1+\dfrac{-2x^2+4x}{\left(x+1\right)}\cdot\dfrac{1}{x\left(x-2\right)}\)
\(=1+\dfrac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1+\dfrac{-2}{x+1}=\dfrac{x+1-2}{x+1}=\dfrac{x-1}{x+1}\)
\(ĐKXĐ:9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow-3\le x\le3\)
Đk: \(x^2-3x+7\ge0\)
\(\Leftrightarrow x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{19}{4}\ge0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge0\) (lđ với mọi x)
Vậy biểu thức luôn xác định với mọi x
Để \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\) được xác định thì \(\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}\ge0\)
\(\Leftrightarrow x-7>0\\ \Leftrightarrow x>7\)
Để \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) được xác định thì \(\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}\ge0\)
\(\Leftrightarrow-x+5< 0\\ \Leftrightarrow x>5\)