![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ĐKXĐ: \(2-4x\ge0\)
\(\Rightarrow x\le\dfrac{1}{2}\)
b, ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{-3}{x-1}>0\\x^2+4\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x\in R\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 1\\x\in R\end{matrix}\right.\)
(Do ta có: \(x^2+4\ge0\) \(\left(\forall x\in R\right)\))
c, ĐKXĐ: \(4x^2-12x+9>0\) (do biểu thức căn dưới mẫu)
\(\Rightarrow\left(2x-3\right)^2>0\)
\(\Rightarrow x\ne\dfrac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Để PT được XĐ thì \(-2x-3\ge0\)
\(\Leftrightarrow-2x\ge3\)
\(\Leftrightarrow x\ge-\frac{3}{2}\)
b)Để PT được XĐ thì \(-\frac{3}{4+x}\ge0\)
Mà -3 < 0
\(\Leftrightarrow4+x< 0\)
\(\Leftrightarrow x< -4\)
c)\(\)Để PT được XĐ thì \(\frac{1}{4x^2-4x+1}\ge0\)
Mà 0 < 1
\(\Leftrightarrow0< 4x^2-4x+1\)
\(\Leftrightarrow0< \left(2x-1\right)^2\)
\(\Leftrightarrow0< 2x-1\)
\(\Leftrightarrow\frac{1}{2}< x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
b: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\le0\end{matrix}\right.\Leftrightarrow2\le x\le4\)
c: ĐKXĐ:\(\left\{{}\begin{matrix}x^2-4\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow x\ge2\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}x+3\ge0\\x^2-9\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in[-3;+\infty)\\x\in(-\infty;-3]\cup[3;+\infty)\end{matrix}\right.\Leftrightarrow x=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
ĐK: \(\forall x\in\mathbb{R}\)
Ta có: \(\sqrt{3x^2}-\sqrt{12}=0\)
\(\Rightarrow \sqrt{3x^2}=\sqrt{12}\)
\(\Rightarrow 3x^2=12\Rightarrow x^2=4\Rightarrow x=\pm 2\) (đều thỏa mãn)
b) ĐK: \(\forall x\in\mathbb{R}\)
\(\sqrt{(x-3)^2}=9\)
\(\Leftrightarrow |x-3|=9\Rightarrow \left[\begin{matrix} x-3=9\\ x-3=-9\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=12\\ x=-6\end{matrix}\right.\)
c) ĐK: $x\in\mathbb{R}$
\(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow \sqrt{(2x)^2+2.2x+1}=6\)
\(\Leftrightarrow \sqrt{(2x+1)^2}=6\)
\(\Leftrightarrow |2x+1|=6\)
\(\Rightarrow \left[\begin{matrix} 2x+1=6\\ 2x+1=-6\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=-\frac{7}{2}\end{matrix}\right.\)
d) ĐK: \(x\geq 1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow \sqrt{16(x-1)}-\sqrt{9(x-1)}+\sqrt{4(x-1)}+\sqrt{x-1}=8\)
\(\Leftrightarrow 4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow 4\sqrt{x-1}=8\Rightarrow \sqrt{x-1}=2\)
\(\Rightarrow x=2^2+1=5\) (thỏa mãn)
e)
ĐK: \(-4\leq x\leq \frac{1}{2}\)
\(\sqrt{1-x}+\sqrt{1-2x}=\sqrt{x+4}\)
\(\Leftrightarrow \sqrt{1-x}-1+\sqrt{1-2x}-1=\sqrt{x+4}-2\)
\(\Leftrightarrow \frac{(1-x)-1}{\sqrt{1-x}+1}+\frac{(1-2x)-1}{\sqrt{1-2x}+1}=\frac{(x+4)-2^2}{\sqrt{x+4}+2}\)
\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+\frac{-2x}{\sqrt{1-2x}+1}=\frac{x}{\sqrt{x+4}+2}\)
\(\Leftrightarrow x\left(\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{1-x}+1}+\frac{2}{\sqrt{1-2x}+1}\right)=0\)
Dễ thấy biểu thức trong ngoặc lớn lớn hơn $0$
Do đó: \(x=0\) là nghiệm duy nhất của pt.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b,\sqrt{\frac{2x-1}{x+3}}\)
\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)
Và \(\frac{2x-1}{x+3}\ge0\)
Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)
Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Biểu thức có nghĩa khi
\(1-4x^2\ge0\)
\(\Leftrightarrow1\ge4x^2\)
\(\Leftrightarrow4x^2\le1\)
\(\Leftrightarrow\sqrt{4x^2}\le\sqrt{1}\)
\(\Leftrightarrow\)/2x/ nhỏ hơn hoặc bằng 1 ("/" là dấu trị tuyệt đối)
\(\Leftrightarrow-1\le2x\le1\)
b. Biểu thức có nghĩa khi \(x^2-x+1\ge0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)
Luôn đúng với mọi x thuộc R
c. Biểu thức có nghĩa khi \(4x-x^2-5\ge0\)
\(\Leftrightarrow-x^2+4x-4-1\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2-1\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge1\)(vô lý)
Suy ra không có giá trị nào của x để biểu thức xác định
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:\(x-\left|x-2\right|\ge0\Leftrightarrow\left|x-2\right|\le x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
dk , x lơn hơn hoặc = 0 , x khác 4
\(\frac{\sqrt{x}}{\sqrt{x-2}}\times\frac{x-4}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+2}}\times\frac{x-4}{2\sqrt{x}}.\)
có \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)\)
\(\frac{\sqrt{x}}{\sqrt{x}-2}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)
rút gọn
\(\frac{\left(\sqrt{x}+2\right)}{2}+\frac{\left(\sqrt{x}-2\right)}{2}\)
\(\frac{2\sqrt{x}}{2}\)
\(ĐKXĐ:4x^2-9\ge0\\ \Leftrightarrow4x^2\ge9\\ \Leftrightarrow x^2\ge\dfrac{9}{4}\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\le-\dfrac{3}{2}\end{matrix}\right.\)