so sánh hai số sau bằng cách vận dụng hằng đẳng thức
A = 4(32 + 1)(34 + 1)....(364 + 1) và B = 3128 - 1
giúp mình lời giải chi tiết được không ạ, cảm ơn m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)
a, \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)
Vậy A<B
b, \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)
Vậy A>B
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)
\(\Rightarrow\)\(A< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)
Vậy \(A< B\)
Chúc bạn học tốt !!!
A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)= ... =4.(3128-1)
<=>8A=4B <=>2A=B =>B>A
a: -1/200<0<1/2000
b; -1789/1788<-1
-1<2009/-2010
=>-1789/1788<-2009/2010
d: -27/45=-3/5
-272727/454545=-3/5
=>-27/45=-272727/454545
\(\sqrt[3]{15\sqrt{3}-26}=\sqrt[3]{-\left(26-15\sqrt{3}\right)}\)
\(=-\sqrt[3]{8-3\cdot2^2\cdot\sqrt{3}+3\cdot2\cdot3-3\sqrt{3}}\)
\(=-\sqrt[3]{\left(2-\sqrt{3}\right)^3}=-\left(2-\sqrt{3}\right)=-2+\sqrt{3}\)
`A=4(3^2+1)(3^4+1)...(3^64+1)`
`=>2A=(3^2-1)(3^2+1)(3^4+1)...(3^64+1)`
- Ta có:
`(3^2-1)(3^2+1)=3^4-1`
`(3^4-1)(3^4+1)=3^16-1`
`....`
`(3^64-1)(3^64+1)=3^128-1`
Suy ra `2A=3^128-1=B`
`=>A<B`