Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta co : A = 1999 * 2001
= ( 2000 - 1 ) *( 2000 + 1 )
= \(2000^2-1\)
Vây A < B
cậu ơi tối mình về mình làm tiếp cho bây giờ mình phải đi hok .
a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)
=> \(A< B\)
b) \(A=12^6\)
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
=> \(A>B\)
c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)
\(B=2012^2\)
=> \(A< B\)
d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)
\(=\frac{3^{128}-1}{2}\)
\(B=3^{128}-1\)
=> \(A< B\)
Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)
\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)
\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)
\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)
\(< =>A>B\)
a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)
\(\Rightarrow A< B\)
b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
...
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)
\(\Rightarrow A>B\)
c,d tương tự
a) \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)
b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}=A\)
c) Tương tự a).
d) Tương tự b).
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)
\(\Rightarrow\)\(A< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)