\(A=4.\left(3^2+1\right).\left(3^4+1\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)

Vậy \(A< B\)

Chúc bạn học tốt !!!

30 tháng 9 2019

A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)=  ...  =4.(3128-1)

<=>8A=4B <=>2A=B =>B>A

18 tháng 4 2016

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)

10 tháng 8 2020

Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)

\(< =>A>B\)

10 tháng 8 2020

a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)

\(\Rightarrow A< B\)

b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

...

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow A>B\)

c,d tương tự

12 tháng 7 2017

\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}< 3^{128}-1=B\)

Vậy \(A< B\)

12 tháng 7 2017

a)A=\(1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)

Vậy A < B

b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)

Vậy B < A

12 tháng 7 2017

a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)\)

\(=2000^2-1^2< 2000^2\)

Vậy A < B.

b) Ta có: \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}\)

Vậy A > B.

18 tháng 7 2018

1) \(\left(x-1\right)^3-125\)

\(=\left(x-1-5\right)\left[\left(x-1\right)^2+5\left(x-1\right)+25\right]\)

\(=\left(x-6\right)\left(x^2-2x+1+5x-5+25\right)\)

=\(=\left(x-6\right)\left(x^2+3x+21\right)\)

2)\(=3^3\left(x+3\right)^3-2^3\)

\(=\left(3+x+3\right)^3-2^3\)

\(=\left(x+6\right)^3-2^3\)

\(=\left(x+6-2\right)\left[\left(x-6\right)^2+2\left(x+6\right)+2^2\right]\)(phá xong rút gọn như câu 1)

Các câu còn lại đều giống nhau là hiệu hai lập phương, bạn cứ làm như trên là đc

6 tháng 10 2018

1)

a)\(A=2013.2015=2013.\left(2014+1\right)=2013.2014+2013\)

\(B=2014^2=2014.\left(2013+1\right)=2014.2013+2014\)

Ta có: \(2014.2013+2014>2013.2014+2013\)

\(\Rightarrow2014^2>2013.2015\)

\(\Rightarrow B>A\)

Vậy \(B>A\)

b) \(A=4.\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=2.4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^{16}-1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

2)

a)\(9x^2-6x+3=\left(3x\right)^2-2.3x.1+1^2+2\)

                           \(=\left(3x-1\right)^2+2\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2\forall x\)

\(\Rightarrow\left(3x-1\right)^2+2>0\forall x\)

                                đpcm

b)\(x^2+y^2+2x+6y+16\)

\(=\left(x^2+2x+1\right)+\left(y^2+2.y.3+3^2\right)+6\)

\(=\left(x+1\right)^2+\left(y+3\right)^2+6\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x+1\right)^2+\left(y+3\right)^2+6\ge6\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)

                                         đpcm

Tham khảo nhé~

6 tháng 10 2018

1.

a) A = 2013.2015 = (2014 - 1)(2014 + 1) = 20142 - 1

Vì 20142 - 1 < 20142 => A < B

Vậy A < B

b) \(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{2}\)

\(\Rightarrow A< B\)

Vậy A < B

Bài 2:

a) \(9x^2-6x+2=\left(3x\right)^2-2.3x+1+2=\left(3x-1\right)^2+2\)

Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+2>0\)

=> 9x2 - 6x + 2 luôn nhận giá trị dương với mọi x

b) \(x^2+y^2+2x+6y+16=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)+6=\left(x+1\right)^2+\left(y+3\right)^2+6\)

Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)

=> x2 + y2 + 2x + 6y + 16 luôn nhận giá trị dương với mọi x

6 tháng 8 2016

\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)

 

6 tháng 8 2016

a)

 Ta có

a chia 5 dư 4

=> a=5k+4 ( k là số tự nhiên )

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)

Vì 25k^2 chia hết cho 5

    40k chia hết cho 5

    16 chia 5 dư 1

=> đpcm

2) Ta có

\(12=\frac{5^2-1}{2}\)

Thay vào biểu thức ta có

\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)

\(\Rightarrow P=\frac{5^{16}-1}{2}\)

3)

\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)