K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

5 tháng 4 2016

Do  \(x+y=1\Rightarrow y=1-x\) nên \(P=5^{2x}+5^{1-x}=5^{2x}+\frac{5}{5^x}\)

Đặt \(t=5^x\) thì 1\(\le t\le\)5 ( do \(0\le x\le1\))

Xét hàm số \(f\left(t\right)=t^2+\frac{5}{t}\) với \(1\le t\le5\)

Ta có \(f'\left(t\right)=2t-\frac{5}{t^2}=\frac{2t^3-5}{t^2}\)

Do đó có bảng biến thiên

t1                            \(^3\sqrt{\frac{5}{2}}\)                                         5
f'(t)                -                0                       +
f(t)

6                                                                               26

                               \(3\sqrt[3]{\frac{25}{4}}\)

Vậy min P=min f(t) = \(f\left(\sqrt[3]{\frac{5}{2}}\right)\)=\(3\sqrt[3]{\frac{25}{4}}\)

        max P =max f(t) =f(5)=26

2 tháng 2 2016

\(\text{Ta có:}\left|2x+4\right|\ge0;\left|y+5\right|\ge0\)

Mà \(-\left|2x+4\right|-\left|y+5\right|\ge0\)

=> \(\left|2x+4\right|=\left|y+5\right|=0\)

=> \(2x+4=y+5=0\)

=> \(x=-2;y=-5\)

2 tháng 2 2016

\(y=\frac{1}{x^2+\sqrt{x}}\)

2 tháng 3 2016

(x, y)= rỗng

18 tháng 9 2023

loading...  

18 tháng 9 2023

a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-2}\le0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow-3\le x< 2\)

d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)

\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)

30 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

 

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

 

22 tháng 3 2020

sai đề hết??ucche

a: \(-3x^2\ge0\)

\(\Leftrightarrow x^2< =0\)

=>x=0

b: \(\dfrac{-5}{4x^2}\ge0\)

\(\Leftrightarrow4x^2< 0\)(vô lý)

c: \(\dfrac{4}{x+3}>=0\)

=>x+3>0

hay x>-3

d: \(\dfrac{-5}{2x-1}>=0\)

=>2x-1<0

hay x<1/2

e: \(\dfrac{-2}{x^2+1}>=0\)

=>x2+1<0(vô lý)

f: \(\dfrac{10}{x^2+9}>=0\)

=>x2+9>0(luôn đúng)

a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)