K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2023

Để giải phương trình |x + 3| - |x + 4| = 2x, chúng ta sẽ thực hiện giải theo hai cách:

Cách 1: Sử dụng giả sử

Đầu tiên, ta sẽ giả sử x + 3 ≥ 0 (trường hợp x + 3 < 0 sẽ được xét sau).

Khi đó, ta có |x + 3| = x + 3 và |x + 4| = x + 4.

Thay vào phương trình ban đầu, ta được:

(x + 3) - (x + 4) = 2x

Simplify và giải phương trình:

x + 3 - x - 4 = 2x

-1 = x

Vậy, x = -1 là một nghiệm.

Tiếp theo, ta sẽ xét trường hợp x + 3 < 0 (tức x < -3).

Khi đó, ta có |x + 3| = -(x + 3) và |x + 4| = -(x + 4).

Thay vào phương trình ban đầu, ta được:

-(x + 3) - -(x + 4) = 2x

Simplify và giải phương trình:

  • x - 3 + x + 4 = 2x

1 = 2x

x = 1/2

Vậy, x = 1/2 cũng là một nghiệm.

Tổng hợp lại, phương trình có hai nghiệm: x = -1 và x = 1/2.

Cách 2: Phân tách các trường hợp

Ta sẽ phân tách phương trình thành các trường hợp khi x có giá trị khác nhau:

Trường hợp 1: x ≥ -3

Trong trường hợp này, ta có |x + 3| = x + 3 và |x + 4| = x + 4.

Thay vào phương trình ban đầu, ta được:

(x + 3) - (x + 4) = 2x

x + 3 - x - 4 = 2x

-1 = x

Trường hợp 2: x < -3

Trong trường hợp này, ta có |x + 3| = -(x + 3) và |x + 4| = -(x + 4).

Thay vào phương trình ban đầu, ta được:

-(x + 3) - -(x + 4) = 2x

  • x - 3 + x + 4 = 2x

1 = 2x

x = 1/2

Tổng hợp lại, phương trình có hai nghiệm: x = -1 và x = 1/2.

Vậy, đây là hai cách giải phương trình |x + 3| - |x + 4| = 2x.

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

15 tháng 2 2020

Ta có : M = 3 - 32 + 33 - 34 + .... + 32017 - 32018 + 32019

=> 3M = 32 - 33 + 34 - 35 + .... + 32018 - 32019 + 32020

Lấy 3M cộng M ta có : 

3M + M = (3 - 32 + 33 - 34 + .... + 32017 - 32018 + 32019) + (32 - 33 + 34 - 35 + .... + 32018 - 32019 + 32020)

4M = 3 + 32020 

Lại có 2x + 15 + 32020 = 4M

<=> 2x + 15 + 32020 = 3 + 32020

=> 2x = - 12

=> x = - 6

Vậy x = - 6

15 tháng 10 2017

\(\left|x+1\right|,\left|x-2\right|,\left|x+3\right|\ge0\)

\(6\ge0\Rightarrow x\ge0\)

\(\left|x+1\right|+\left|x-2\right|+\left|x+3\right|=6\)

\(\Rightarrow\left(x+1\right)+\left(x-2\right)+\left(x+3\right)=6\)

\(\Rightarrow\left(x+x+x\right)+\left(1-2+3\right)=6\)

\(\Rightarrow3x+2=6\)

\(\Rightarrow3x=6-2\)

\(\Rightarrow3x=4\)

\(\Rightarrow x=\frac{4}{3}\)

24 tháng 9 2017

\(\frac{1}{2x-x^2+1}=\frac{1}{2-\left(x^2-2x+1\right)}=\frac{1}{2-\left(x-1\right)^2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi x=1

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

17 tháng 1 2018

Thực ra 2 câu đầu rất dễ nha bạn ^^!

1) x+ 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0

<=> (x3+x)(x+2) + 1=0

1>0

=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0

<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)

b)

x3+1=\(2\sqrt[3]{2x-1}\)

<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)

<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)

<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0

<=> x=1

17 tháng 1 2018

xin lỗi bạn mình ghi nhầm câu 1, mai mình sẽ sửa lại