cho a\(^3\)+b\(^3\)=2 .c/m: a+b < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)
Biến đổi:
\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)
\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)
\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)
Áp dụng BĐT Am-Gm:
\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$
Vì \(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)
\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)
\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.
Bài 2a)
Ta có
\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)
\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)
\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)
Vì \(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)
\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)
Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó
\(fix:\left\{{}\begin{matrix}\left|a-c\right|< 3\\\left|b-c\right|< 2\end{matrix}\right.\)
Cộng theo vế \(\Rightarrow\left|a-c\right|+\left|b-c\right|< 3+2=5\)
\(\Rightarrow\left|a-c\right|+\left|c-b\right|< 5\)
Áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được: \(\left|a-c\right|+\left|c-b\right|\ge\left|a-c+c-b\right|=\left|a-b\right|\)
Suy ra: \( \left|a-b\right|\le\left|a-c\right|+\left|c-b\right|< 5\)
Hay \(\left|a-b\right|< 5\left(đpcm\right)\)
\(VT=a^3\left(b^2-c^2\right)+b^3\left(b^2-a^2\right)+b^3\left(c^2-b^2\right)+c^3\left(a^2-b^2\right)\)
\(=\left(b^2-c^2\right)\left(a^3-b^3\right)-\left(a^2-b^2\right)\left(b^3-c^3\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)\left(a^2+b^2+ab\right)-\left(a-b\right)\left(b-c\right)\left(a+b\right)\left(b^2+c^2+bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-ac^2-bc^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[b\left(a-c\right)\left(a+c\right)+ac\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)
Do \(a< b< c\Rightarrow\left\{{}\begin{matrix}a-b< 0\\b-c< 0\\a-c< 0\end{matrix}\right.\) \(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)< 0\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)< 0\) (đpcm)
Vì \(0< a,b,c< 1\) nên
\(\Rightarrow\left\{{}\begin{matrix}a^2< a\\b^2< b\\c^2< c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< a+b+c=2\)
c/m phản chứng hoặc đổi (a^3;b^3)->(x;y) ,dùng holder
AM-GM: \(a^3+b^3\ge\frac{\left(a+b\right)^3}{4}\)