K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

Do 0 < a,b,c < 1 nên  (a - 1)(b - 1)(c - 1) < 0

hay abc < ab + bc + ca - (a + b + c) + 1 = ab + bc + ca - 1

suy ra:a+ b+ c+ 2abc < a+ b+ c2 + 2(ab + bc + ca - 1) = (a + b + c)- 2 = 2- 2 = 2

11 tháng 6 2015

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²

 tương tự: bc+ab > b²; ca+bc > c²  

cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)  

g thiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}  

=> 2 > a²+b²+c² (đpcm) 

11 tháng 10 2019

theo nguyên lí Dirichlet thì trong 3 số a, b, c có ít nhất 2 số cùng dấu, giả sử 2 số đó là b, c hay \(bc\ge0\)

=> \(a^2+b^2+c^2\le a^2+\left(b^2+2bc+c^2\right)=a^2+\left(b+c\right)^2=a^2+\left(-a\right)^2=2a^2< 2\)

2 tháng 1 2018

post ít một thôi

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bạn xem lời giải tại đây:

https://hoc24.vn/hoi-dap/question/176012.html

1 tháng 2 2017

Câu hỏi của Nguyễn Minh Tuấn - Toán lớp 10 | Học trực tuyến

AH
Akai Haruma
Giáo viên
11 tháng 9 2018

Bài 1:

Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)

Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.

Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)

\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )

Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$

Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)

Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)

Chiều đảo:

Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)

Vậy ta có đpcm.

AH
Akai Haruma
Giáo viên
11 tháng 9 2018

Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.

Phản chứng, giả sử cả 3 BĐT đều đúng

\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)

Theo BĐT AM-GM thì:

\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)

\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)

\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)

Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.