K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2023

 Điều cần chứng minh của bạn mới có 1 vế thôi nhé. Mình chưa thấy vế kia đâu thì không thể giúp bạn được.

16 tháng 9 2017

\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế

NV
15 tháng 6 2020

\(0< a< 1\Rightarrow a-1< 0\Rightarrow a\left(a-1\right)< 0\Rightarrow a^2< a\)

Tương tự: \(b\left(b-1\right)< 0\Rightarrow b^2< b\) ; \(c\left(c-1\right)< 0\Rightarrow c^2< c\)

Cộng vế với vế:

\(a^2+b^2+c^2< a+b+c\Rightarrow a^2+b^2+c^2< 2\) (đpcm)

10 tháng 7 2019

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\left(a+b\right)^2< 4\Rightarrow-2< a+b< 2\Rightarrow a+b< 2\)

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm

24 tháng 4 2020

a)Ta có a>0,b>0,a<b

Nhân cả 2 vế của a<b với a

=> a^2<ab ( vì a>0)

Nhân cả 2 vế của a<b với b

=> ab<b^2 ( vì b>0)

b)có a,b>0 , a<b

Bình phương a<b

=> a^2<b^2

a,b>0, a<b

=> a^3<b^3

AH
Akai Haruma
Giáo viên
25 tháng 7 2020

Lời giải:

Ta có: $a^2+b^2-2ab=(a-b)^2\geq 0$ với mọi $a,b$

$\Leftrightarrow ab\leq \frac{a^2+b^2}{2}$
Do đó: $a^2+b^2=4+ab\leq 4+\frac{a^2+b^2}{2}\Rightarrow a^2+b^2\leq 8(*)$

Mặt khác:

Từ đkđb suy ra $2(a^2+b^2)=2(4+ab)$

$\Leftrightarrow 3(a^2+b^2)=8+(a+b)^2\geq 8$

$\Rightarrow a^2+b^2\geq \frac{8}{3}(**)$

Từ $(*); (**)\Rightarrow$ đpcm.

9 tháng 4 2021

tính ra bạn ấy hỏi vào năm 2016 khi có người trả lòi thì đã là năm 2020

 

14 tháng 12 2016

Bài 2:

Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :

Bình phương 2 vế của (*) ta có:

\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)

\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)

Áp dụng (*) vào bài toán ta có:

\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)

6 tháng 2 2017

cảm ơn nhiều nha leuleuhiha

29 tháng 4 2017

\(0\le x,y,z\le1\) nên ta có:

\(\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\Rightarrow x^2+y^2+z^2\le x+y+z=2\)