K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế

3 tháng 7 2017

 Ta có a² + \(\sqrt{a}\) + \(\sqrt{a}\) ≥ 3a ( 1 ) 

b² + \(\sqrt{b}\) + \(\sqrt{b}\) ≥ 3b ( 2 ) 

c² + \(\sqrt{c}\) + \(\sqrt{c}\) ≥ 3c ( 3 ) 

Cộng từng vế ( 1 ) ( 2 ) ( 3 ) cho ta 

a² + b² + c² + 2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 3 ( a + b + c ) = 9 

2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)) ≥ 9 - ( a² + b² + c² ) 

2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 9 - ( a + b + c )² + 2 (ab + bc + ca) = 2 (ab + bc + ca) 

Vậy\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ≥ ab + bc + ca 

Dấu bằng xãy ra khi và chỉ khi a = b = c = 1

Vậy......

3 tháng 7 2017

ko biết làm thì lượn nhé ngứa mắt

6 tháng 1 2015

Do 1≥ a,b,c≥0 ta co:

         \((1-a^2)(1-b)+(1-b^2)(1-c)+(1-c^2)(1-a) ≥ 0\)

  <=>  \(3+a^2b+b^2c+c^2a ≥ a^2+b^2+c^2+a+b+c\)(1)

  Lai co: \(a^2(1-a)+b^2(1-b)+c^2(1-c)+a(1-a^2)+b(1-b^2)+c(1-c^2) ≥ 0\)

  <=>  \(a^2+b^2+c^2+a+b+c ≥ 2(a^3+b^3+c^3)\)(2)

 Tu (1) va (2) suy ra \(3+a^2b+b^2c+c^2a ≥ 2(a^3+b^3+c^3)\)

27 tháng 3 2020

Rút \(b=3-a\Rightarrow2\ge b\ge1\left(\text{vì }a,b\le2\right)\)

Tương tự: \(2\ge a\ge1\). Do đó:

\(\left(2-a\right)\left(a-1\right)+\left(2-a\right)\left(b-1\right)\ge0\)\(\Leftrightarrow5\ge a^2+b^2\)

Đẳng thức xảy ra khi \(\left(a;b\right)=\left\{\left(2;1\right);\left(1;2\right)\right\}\)

23 tháng 10 2017

Ta có:

\(\left(1-a^2\right)\left(1-b\right)>0\)

\(\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\left(1\right)\)

(Vì \(0< a,b< 1\))

Tương tự ta có: 

\(\hept{\begin{cases}1+b^2c>b^3+c^3\left(2\right)\\a+c^2a>c^3+a^3\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(2\left(a^3+b^3+c^3\right)< 3+a^2b+b^2c+c^2a\)