\(\frac{1}{3\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot18}=...\)
Nhập kết quả dưới dạng phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}=\frac{1.2.3+2^3.\left(1.2.3\right)+3^3.\left(1.2.3\right)+5^3.\left(1.2.3\right)}{1.3.6+2^3.\left(1.3.6\right)+3^3.\left(1.3.6\right)+5^3.\left(1.3.6\right)}=\frac{1.2.3.\left(1+2^3+3^3+5^3\right)}{1.3.6.\left(1+2^3+3^3+5^3\right)}=\frac{2}{6}=\frac{1}{3}\)
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)
a)\(\frac{1}{99.97}\)−\(\frac{1}{97.95}\)−\(\frac{1}{95.93}\)−…−\(\frac{1}{5.3}\)−\(\frac{1}{3.1}\)
=\(\frac{1}{99.97}\)−(\(\frac{1}{97.95}\)+\(\frac{1}{95.93}\)+…+\(\frac{1}{5.3}\)+\(\frac{1}{3.1}\))
=\(\frac{1}{99.97}\)−\(\frac{1}{2}\).(\(\frac{1}{95}\)−\(\frac{1}{97}\)+\(\frac{1}{93}\)−\(\frac{1}{95}\)+…+\(\frac{1}{3}\)−\(\frac{1}{5}\)+1−\(\frac{1}{3}\))
=\(\frac{1}{99.97}\)−\(\frac{1}{2}\).(1−\(\frac{1}{97}\))
=\(\frac{1}{99.97}\)−\(\frac{1}{2}\).\(\frac{96}{97}\)
=\(\frac{1}{99.97}\)−\(\frac{48}{97}\)
=\(\frac{1}{99.97}\)−\(\frac{48.99}{99.97}\)
=\(\frac{-4751}{9603}\)
Phân số thứ 20 à , hơi khó đó
Nhưng kết quả là:\(\frac{1}{1599}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}\)\(\frac{1}{18}\)
= \(\frac{1}{3}-\frac{1}{18}\)
= \(\frac{5}{18}\)
kết quả là 439/2808