\(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

b)=1/5.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/44-1/49).2-1-3-5-7-...-49/89

=1/5.(1/4-1/49).2-(1+3+5+7...+49)/89

=1/5.45/196.2-625/89

=9/196.-623/89

=9/196.-7

=9/28

h cho mình nha ! Chúc bạn học tốt

15 tháng 7 2019

\(a,\frac{27^4\cdot2^3-3^{10}\cdot4^3}{6^4\cdot9^3}=\frac{3^{12}\cdot2^3-3^{10}\cdot2^6}{2^3\cdot3^4\cdot3^6}=\frac{3^{10}\cdot2^3\cdot\left(3^2-2^3\right)}{2^3\cdot3^{10}}=3^2-2^3=1\)

\(b,\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)

\(=\frac{1}{5}\left(\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-\left(3+5+7+...+49\right)}{89}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\cdot\frac{1-\left(3+49\right)\cdot24\div2}{89}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\frac{505}{89}\)

\(=\frac{1}{5}\cdot\frac{45}{196}\cdot\frac{505}{89}\)

25 tháng 2 2018

\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)

\(=\frac{2^{19}.\left(3^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)

\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)

\(=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)

\(=\frac{2^{18}.3^8\left(2.3+15\right)}{2^{19}.3^9\left(1+2.3\right)}\)

\(=\frac{6+15}{2.3\left(1+6\right)}\)

\(=\frac{21}{6.7}\)

\(=\frac{21}{42}\)

\(=\frac{1}{2}\)

12 tháng 12 2018

Có P =\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\dfrac{2^{19}.\left(3^3\right)^3+5.3.\left(3^2\right)^4}{\left(2.3\right)^9+\left(3.2^2\right)^{10}}\)=\(\dfrac{2^{19}.3^9+5.3.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.\left(2^2\right)^{10}}=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.2^{20}}=\dfrac{2^{18}.3^9.\left(2+5\right)}{3^9.2^{19}.\left(1+3.2\right)}=\dfrac{2^{18}.3^9.7}{3^9.2^{19}.7}\)

=\(\dfrac{1}{2}\)

19 tháng 7 2017

Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)

26 tháng 6 2016

\(=\frac{2^{19}3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+4^{10}\cdot3^{10}}=\frac{2^{19}\cdot3^9+5\cdot2^{18}\cdot3^9}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\frac{2^{18}\cdot3^9\cdot\left(2+5\right)}{2^{19}\cdot3^9\left(1+6\right)}=\frac{1}{2}\)