K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c

            f(2)  = a.22 + b.2 +c = 4a + 2b + c

Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0

=> f(-1) = -f(2)

Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0

Vậy....

17 tháng 6 2019

#)Giải :

Ta có f(2) = 4a + 2b + c

          f(-1)= a - b + c

=> f(2) + f(-1) = 4a + 2b + c + a - b + c 

                       = 5a + b + 2c

Mà 5a + b + 2c = 0 => f(2) + f(-1) = 0 => f(2) = f(-1)

=> f(-1).f(2) ≤ 0 ( đpcm )

30 tháng 3 2021

giúp tôi

30 tháng 3 2021

khó ghê

2 tháng 5 2021

Ta có : f(-2) = 4a - 2b + c

f(3) = 9a + 3b + c

Lại có f(-2) + f(3) = 4a - 2b + c + 9a + 3b + c = 13a + b + 2c = 0(Vì 13a + b + 2c = 0)

=> f(-2) = - f(3)

=> [f(-2)]2  = -f(3).f(-2)

mà [f(-2)]2 \(\ge0\)

=> -f(3).f(-2) \(\ge0\)

=> f(-2).f(3) \(\le\)0

4 tháng 5 2017

Ta có: P(-1) = a-b+c

P(-2) = 4a-2b+c

=> P(-1)+P(-2) = 5a-3b+2c = 0

=> P(-1) = P(2)

=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0

Vậy P(-1).P(-2) \(\le\)0

4 tháng 5 2017

...

=> ...

=> P(-1) = - P(-2)

=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0

=> P(-1).P(-2) \(\ge\)0

Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa

AH
Akai Haruma
Giáo viên
29 tháng 10

** Sửa đề:

Cho $F(x)=ax^2+bx+c$.

CMR: $F(-2)F(3)\leq 0$ biết $13a+b+2c=0$

Lời giải:

Ta có:

$F(-2)=a.(-2)^2+b.(-2)+c=4a-2b+c$

$F(3) = a.3^2+3b+c=9a+3b+c$

$\Rightarrow F(-2)+F(3)=13a+b+2c=0$

$\Rightarrow F(-2)=-F(3)$

$\Rightarrow F(-2)F(3)=-F^2(3)\leq 0$

Ta có đpcm.