Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : f(2) = 4a + 2b + c
f(-5) = 25a - 5b + c
=> f(2) + f(-5) = (4a + 25a) + (2b - 5b) + (c + c) = (29a + 2c) - 3b = 3b - 3b = 0 (Vì 29a + 2c = 3b)
=> f(2) = -f(5)
=> 4a + 2b + c = -(25a - 5b + c)
=> f(2).f(-5) = (4a + 2b + c).(25a + 5b + c) = -(25a + 5b + c)2 < 0 (đpcm)
Ta có: P(-1) = a-b+c
P(-2) = 4a-2b+c
=> P(-1)+P(-2) = 5a-3b+2c = 0
=> P(-1) = P(2)
=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0
Vậy P(-1).P(-2) \(\le\)0
...
=> ...
=> P(-1) = - P(-2)
=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0
=> P(-1).P(-2) \(\ge\)0
Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....
1) f(x)=1008 - (100+1)*1007 + (100+1)*1006 - .........- (100+1)100+125
=1008 - 1008 - 1007+1007 + 1006 - ......-1002 - 100+125
=25