vẽ hình luôn nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét \(\Delta ABC\left(\widehat{A}=90^o\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí pitago)
\(\Rightarrow BC^2=8^2+6^2\)
\(\Rightarrow BC^2=64\)
\(\Rightarrow BC=8cm\)
Xét \(\Delta ABC\left(\widehat{A}=90^o\right)\) có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\)
\(\Rightarrow AH=4,8cm\)
Xét \(\Delta ABC\left(\widehat{A}=90^o\right)\) có:
\(AB^2=BH.BC\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
\(\Rightarrow CH=BC-BH=10cm-3,6cm=6,4cm\)
b) Xét \(\Delta ABH\left(\widehat{H}=90^o\right)\) và \(\Delta ADH\left(\widehat{H}=90^o\right)\) có:
\(BH=HD\) (giả thiết)
\(AH\) là cạnh chung
\(\Rightarrow\Delta ABH=\Delta ADH\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{ADH}\) (\(2\) cạnh tương ứng)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: BC=5cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Ta có: ΔABD=ΔEBD
nên DA=DE
mà DE<DC
nên DA<DC
:a) Điện trở tương đương toàn mạch:
\(R_{12}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.40}{60+40}=24\left(\Omega\right)\)
b) Vì \(R_1//R_2\Rightarrow U=U_1=U_2=I_{12}.R_{tđ}=0,5.24=12\left(V\right)\)
Cường độ dòng điện qua mỗi điện trở:
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{60}=0,2\left(A\right)\\ I_2=\dfrac{U_2}{R_2}=\dfrac{12}{40}=0,3\left(\Omega\right)\)
c) \(\left(R_1//R_2\right)ntR_3\)
Công suất điện R1:
\(P_1=U_1.I_1=12.0,2=2,4\left(W\right)\)
Công suất điện R3:
\(P_3=\dfrac{P_1}{2}=\dfrac{2,4}{2}=1,2\left(W\right)\)
\(R_{12}ntR_3\Rightarrow I_{12}=I_3=0,5\left(A\right)\)
Hiệu điện thế 2 đầu R3:
\(P_3=U_3.I_3\rightarrow U_3=\dfrac{P_3}{I_3}=\dfrac{1,2}{0,5}=2,4\left(V\right)\)
Điện trở R3:
\(R_3=\dfrac{U_3}{I_3}=\dfrac{2,4}{0,5}=4,8\left(\Omega\right)\)
Ko chắc :v
a: Xét ΔABC vuông tại A và ΔDBA vuông tại D có
góc B chung
=>ΔABC đồng dạng với ΔDBA
b: Xét ΔBDE vuông tại D và ΔBGC vuông tại G có
góc DBE chung
=>ΔBDE đồng dạng với ΔBGC
=>BD/BG=BE/BC
=>BD*BC=BG*BE
c: BF=BA
=>BF^2=BE*BG
=>BF/BE=BG/BF
=>ΔBFG đồng dạng với ΔBEF
=>góc BEF=góc BFG