Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
Xét tứ giác OCAD có
I là trung điểm chung của OA và CD
=>OCAD là hình bình hành
Hình bình hành OCAD có OC=OD
nên OCAD là hình thoi
2: Ta có: OCAD là hình thoi
=>OA là phân giác của góc COD
Xét ΔOCM và ΔODM có
OC=OD
\(\widehat{COM}=\widehat{DOM}\)
OM chung
Do đó: ΔOCM=ΔODM
=>\(\widehat{OCM}=\widehat{ODM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{ODM}=90^0\)
=>MD là tiếp tuyến của (O)
3:
Xét (O) có
ΔCFE nội tiếp
CE là đường kính
Do đó: ΔCFE vuông tại F
=>CF\(\perp\)FE tại F
=>CF\(\perp\)ME tại F
Xét ΔCME vuông tại C có CF là đường cao
nên \(MF\cdot ME=MC^2\left(1\right)\)
Xét ΔMCO vuông tại C có CI là đường cao
nên \(MI\cdot MO=MC^2\left(2\right)\)
Từ (1) và (2) suy ra \(MF\cdot ME=MI\cdot MO\)
=>\(\dfrac{MF}{MO}=\dfrac{MI}{ME}\)
Xét ΔMFI và ΔMOE có
\(\dfrac{MF}{MO}=\dfrac{MI}{ME}\)
\(\widehat{FMI}\) chung
Do đó: ΔMFI đồng dạng với ΔMOE
bạn đợi mình tí ha hình vẽ ko up lên bình luận được nên tí mình up lên trang cá nhân bạn vô bạn xem ha
a, ta có: AB, AC là 2 tiếp tuyến của (O); OC=OB (=R); AB=AC (t/chat 2 tiếp tuyến cắt nhau)
=>OE là đường trung trực của BC =>OE ⊥ BC
Xét (O) có: OA=OB=OC=R=AB/2 =>△ABC vuông tại C
b, ta có: AD=DC (t/chat 2 tiếp tuyến cắt nhau)
BE=CE (t/chat 2 tiếp tuyến cắt nhau)
Mà DC+CE=DE => DE=AD+BE
c, gọi I là giao điểm của OD và AC; K là giao điểm của BC và OE
Xét tứ giác OICK có:
∠OIC = ∠ICK = ∠OKC (=90*)
=> OICK là hình chữ nhật => ∠IOK=90* hay ∠DOE=90*
d, ta có: ∠AOD=∠COD (t/chat 2 tiếp tuyến cắt nhau)
∠COE=∠BOE (t/chat 2 tiếp tuyến cắt nhau)
Mà ∠DOC+∠COE=∠DOE=90* =>∠AOD+∠BOE=90*
Xét △ADO và △BEO có:
∠DAO=∠OBE (=90*); ∠ADO=∠BOE (cùng phụ với ∠AOD)
=>△ADO đồng dạng △BEO =>AD/BE=AO/BO.....
Hình như đề sai hay sao á làm ko ra câu d bạn ơi
Mình bổ sung thêm ạ, sau khi xét xong tứ giác và suy ra cộng bằng 180 : Mà 2 góc này ở vị trí đối nhau ạ
1:
a: Xét ΔOBA và ΔOCA có
OB=OC
AB=AC
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}\)
mà \(\widehat{OBA}=90^0\)
nên \(\widehat{OCA}=90^0\)
=>AC\(\perp\)OC tại C
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó: ΔBCE vuông tại C
=>BC\(\perp\)CE tại C
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Ta có: OA\(\perp\)BC
CE\(\perp\)CB
Do đó: OA//CE
2: Gọi giao điểm của EC với BA là K
Ta có: BC\(\perp\)CE tại C
=>BC\(\perp\)EK tại C
=>ΔBCK vuông tại C
Ta có: \(\widehat{ACK}+\widehat{ACB}=\widehat{BCK}=90^0\)
\(\widehat{AKC}+\widehat{ABC}=90^0\)(ΔBCK vuông tại C)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ACK}=\widehat{AKC}\)
=>AC=AK
mà AC=AB
nên AK=AB(3)
Ta có: CH\(\perp\)BE
BA\(\perp\)BE
Do đó: CH//BA
Xét ΔEBA có MH//BA
nên \(\dfrac{MH}{BA}=\dfrac{EM}{EA}\left(4\right)\)
Xét ΔEAK có MC//AK
nên \(\dfrac{MC}{AK}=\dfrac{EM}{EA}\left(5\right)\)
Từ (3),(4),(5) suy ra MH=MC
=>M là trung điểm của CH
1, Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)
2,
a, Áp dụng HTL: \(\left\{{}\begin{matrix}AD\cdot AB=AH^2\\AE\cdot AC=AH^2\end{matrix}\right.\Rightarrow AD\cdot AB=AE\cdot AC\)
b, \(AD\cdot AB=AE\cdot AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\Rightarrow\Delta ABC\sim\Delta AED\left(c.g.c\right)\)
a: BC=15cm
AH=7,2cm