K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

độ dài cung PB=pi*MB*góc PMB/180

độ dài cung CB=pi*OB*góc COB/180

mà MB=1/2OB; góc PMB=2*góc COB

nên độ dài cung BC=độ dài cung BP

8 tháng 5 2021

1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)

\(\Rightarrow OD\perp AC\)tại E

\(\Rightarrow\widehat{CEO}=90^0\)

Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)

Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH

\(\Rightarrow OECH\)nội tiếp (dhnb )

2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)

\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)

\(=90^0\left(đpcm\right)\)

3)  Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.

Ta có: AC // OP ( cùng vuông góc với BC )

Xét tam giác DOP có : EC // OP

\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)

Lại có: CH // BP ( cùng vuông góc với AB )

Xét tam giác DBP có: CM // BP

\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)

Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB

\(\Rightarrow EM//OB\)ta let đảo

Hay EM // AB ( đpcm) 

1: 

a: M là điểm chính giữa của cung AB

=>OM vuông góc AB

góc APB=1/2*sđ cung AB=90 độ

góc COB+góc CPB=180 độ

=>COBP nội tiếp

Xet ΔAOC vuông tại O và ΔAPB vuông tại P có

góc CAO chung

=>ΔAOC đồng dạng với ΔAPB

=>AO/AP=AC/AB

=>AP*AC=AO*AB=2R^2 ko đổi

b: Xét ΔBOD vuông tại O và ΔCOA vuông tại O có

góc BDO=góc CAO

=>ΔBOD đồng dạng với ΔCOA

c: góc OPI=90 độ

=>góc IPC+góc OPC=90 độ

=>góc IPC+góc PAB=90 độ

=>góc IPC=góc ACO=góc ICP

=>IC=IP và góc IDP=góc IPD

=>IC=IP=ID

=>IC=ID

28 tháng 3 2016

a>  dễ có từ giác ABOC nội típ nên góc BCD=BAD

góc FIO+FCO=180 => tứ giác FIOC nội típ => IFO=ICD mà ICD=BAO => tứ giác AFOD nt => FAO=FDO

=> đpcm

28 tháng 3 2016

từ phần a mik cm => phần b nha

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0

a: Xét (O) có

ΔBEA nội tiếp

BA là đường kính

=>ΔBEA vuông tại E

góc MCA+góc MEA=90+90=180 độ

=>MCAE nội tiếp

b: góc BFA=1/2*sđ cung BA=1/2*180=90 độ

Xét ΔBFA vuông tại F và ΔBCN vuông tai C có

góc B chung

=>ΔBFA đồng dạng với ΔBCN

=>BF/BC=BA/BN

=>BC*BA=BF*BN

Xét ΔBEA vuông tại E và ΔBCM vuông tại C có

góc EBA chung

=>ΔBEA đồng dạng với ΔBCM

=>BE/BC=BA/BM

=>BC*BA=BE*BM=BF*BN

4 tháng 3 2023

Có hình ko bạn

11 tháng 6 2021

a) ý bạn chắc là BD cắt đường tròn đk BC tại K nhỉ.chứ ko có điểm K

Vì BC là đường kính \(\Rightarrow\angle CKB=90\)

\(\Rightarrow\angle DHC+\angle DKC=90+90=180\Rightarrow DHCK\) nội tiếp

b) Dễ dàng chứng minh được H là trung điểm DE

\(\Rightarrow\) DE và AC cắt nhau tại trung điểm mỗi đường

\(\Rightarrow ADCE\) là hình bình hành có \(DE\bot AC\Rightarrow ADCE\) là hình thoi

\(\Rightarrow CE\parallel DA\) mà \(DA\bot DB\left(\angle ADB=90\right)\Rightarrow CE\bot DB\)

mà \(CK\bot DB\left(\angle CKB=90\right)\Rightarrow C,E,K\) thẳng hàng 

c) MN cắt DE tại G.Kẻ tiếp tuyến MM' của (O)

Ta có: \(EM^2+DN^2=GM^2+GE^2+GD^2+GN^2\)

\(=\left(GM^2+GD^2\right)+\left(GE^2+GN^2\right)=MD^2+EN^2\left(1\right)\)

Vì MM' là đường kính \(\Rightarrow\angle MNM'=90\Rightarrow M'N\bot MN\)

mà \(MN\bot DE\) \(\Rightarrow M'N\parallel DE\) \(\Rightarrow DNM'E\) là hình thang

mà \(DNM'E\) nội tiếp \(\Rightarrow DNM'E\) là hình thang cân

\(\Rightarrow EN=M'D\left(2\right)\)

Từ (1) và (2) \(\Rightarrow EM^2+DN^2=DM^2+DM'^2=MM'^2=4R^2\)

undefined