cho dt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: 

a: M là điểm chính giữa của cung AB

=>OM vuông góc AB

góc APB=1/2*sđ cung AB=90 độ

góc COB+góc CPB=180 độ

=>COBP nội tiếp

Xet ΔAOC vuông tại O và ΔAPB vuông tại P có

góc CAO chung

=>ΔAOC đồng dạng với ΔAPB

=>AO/AP=AC/AB

=>AP*AC=AO*AB=2R^2 ko đổi

b: Xét ΔBOD vuông tại O và ΔCOA vuông tại O có

góc BDO=góc CAO

=>ΔBOD đồng dạng với ΔCOA

c: góc OPI=90 độ

=>góc IPC+góc OPC=90 độ

=>góc IPC+góc PAB=90 độ

=>góc IPC=góc ACO=góc ICP

=>IC=IP và góc IDP=góc IPD

=>IC=IP=ID

=>IC=ID

8 tháng 5 2021

JKhGU0S_d.webp?maxwidth=760&fidelity=grand

1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)

\(\Rightarrow OD\perp AC\)tại E

\(\Rightarrow\widehat{CEO}=90^0\)

Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)

Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH

\(\Rightarrow OECH\)nội tiếp (dhnb )

2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)

\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)

\(=90^0\left(đpcm\right)\)

3)  Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.

Ta có: AC // OP ( cùng vuông góc với BC )

Xét tam giác DOP có : EC // OP

\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)

Lại có: CH // BP ( cùng vuông góc với AB )

Xét tam giác DBP có: CM // BP

\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)

Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB

\(\Rightarrow EM//OB\)ta let đảo

Hay EM // AB ( đpcm) 

11 tháng 6 2021

a) ý bạn chắc là BD cắt đường tròn đk BC tại K nhỉ.chứ ko có điểm K

Vì BC là đường kính \(\Rightarrow\angle CKB=90\)

\(\Rightarrow\angle DHC+\angle DKC=90+90=180\Rightarrow DHCK\) nội tiếp

b) Dễ dàng chứng minh được H là trung điểm DE

\(\Rightarrow\) DE và AC cắt nhau tại trung điểm mỗi đường

\(\Rightarrow ADCE\) là hình bình hành có \(DE\bot AC\Rightarrow ADCE\) là hình thoi

\(\Rightarrow CE\parallel DA\) mà \(DA\bot DB\left(\angle ADB=90\right)\Rightarrow CE\bot DB\)

mà \(CK\bot DB\left(\angle CKB=90\right)\Rightarrow C,E,K\) thẳng hàng 

c) MN cắt DE tại G.Kẻ tiếp tuyến MM' của (O)

Ta có: \(EM^2+DN^2=GM^2+GE^2+GD^2+GN^2\)

\(=\left(GM^2+GD^2\right)+\left(GE^2+GN^2\right)=MD^2+EN^2\left(1\right)\)

Vì MM' là đường kính \(\Rightarrow\angle MNM'=90\Rightarrow M'N\bot MN\)

mà \(MN\bot DE\) \(\Rightarrow M'N\parallel DE\) \(\Rightarrow DNM'E\) là hình thang

mà \(DNM'E\) nội tiếp \(\Rightarrow DNM'E\) là hình thang cân

\(\Rightarrow EN=M'D\left(2\right)\)

Từ (1) và (2) \(\Rightarrow EM^2+DN^2=DM^2+DM'^2=MM'^2=4R^2\)

undefined

 

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh tứ giác DHKC nội tiếp b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD c) Đường thẳng đi qua K song song với BC cắt đường...
Đọc tiếp

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC).

a) Chứng minh tứ giác DHKC nội tiếp

b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD

c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC thì E luôn nằm trên một đường tròn cố định.

Bài 4. Cho đường tròn tâm (O), hai điểm A, B nằm trên (O) sao cho AOB = 900 . Điểm C trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI và BK của tam giác ABC cắt nhau tại H, BK cắt (O) tại N (N khác B); AI cắt (O) tại điểm M (M khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng

a) Tứ giác CIHK nội tiếp

b) MN là đường kính của (O)

c) OC song song với DH.

 

GIÚP MÌNH VỚI!!!

GẤPPP

1
17 tháng 2 2020

Xin lỗi các bạn nhé 

Bài 3: góc ABD = 60 độ

Bài 4: AOB = 90 độ