K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

\(\Leftrightarrow x^3-6x^2+12x-8=-27\)

\(\Leftrightarrow\left(x-2\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x-2=-3\)

\(\Leftrightarrow x=-1\)

5 tháng 5 2021

x3+6x^2+12x−19=0

(x^3+6x^2+12x+8)−27=0

(x+2)^3=3

x+2=3

x=1

Vậy...

 

 

19 tháng 2 2020

a, x^2 - x - 20 = 0

=> x^2 - 5x + 4x - 20 = 0

=> x(x - 5) + 4(x - 5) = 0

=> (x + 4)(x - 5) = 0

=> x + 4 = 0 hoặc x - 5 = 0

=> x = -4 hoặc x = 5

b, x^3 - 6x^2 + 12x + 19 = 0

=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0

=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0

=> (x^2 - 7x + 19)(x + 1) = 0

x^2 - 7x + 19 > 0

=> x + 1 = 0

=> x = -1

19 tháng 2 2020

\(a,x^2-x-20=0\)

\(x^2-5x+4x-20=0\)

\(\left(x-5\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)

\(b,x^3-6x^2+12x+19=0\)

\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\left(x+1\right)\left(x^2-7x+19\right)=0\)

Vì \(\left(x^2-7x+19\right)>0\forall x\)

\(x+1=0\)

\(x=-1\)

18 tháng 11 2017

\(=\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=\left(x+1\right)\left(x^2-7x+19\right)=0\)

Ta thấy:  \(x^2-7x+19=x^2-2\times\frac{7}{2}x+\frac{7}{2}^2+\frac{27}{4}=\left(x-\frac{7}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)lớn hơn 0

\(\Rightarrow x+1=0\Rightarrow x=-1\)

18 tháng 11 2017

\(x^3-6x^2+12x+19=0\)

\(\Leftrightarrow\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-7x+19\right)=0\)

Mà \(x^2-7x+19>0\)với \(\forall x\)

\(\Rightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(x=-1\)

e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

f: Ta có: \(x^3-6x^2+12x-19=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)

\(\Leftrightarrow\left(x-2\right)^3=11\)

hay \(x=\sqrt[3]{11}+2\)

22 tháng 3 2022

`Answer:`

a. \(x^3+6x^2+12=19\)

\(\Leftrightarrow x^3+6x^2+12x-19=0\)

\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)

\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)

Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)

\(\Rightarrow x-1=0\Leftrightarrow x=1\)

b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)

\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)

\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)

\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)

\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)

\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)

\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)

c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)

\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(2x+3-x+2\right)^2\)

\(=\left(x+5\right)^2\)

22 tháng 7 2017

a) \(x^3-6x^2+12x-9=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-1=0\)

\(\Leftrightarrow\left(x-2\right)^3=1\)

\(\Leftrightarrow x-2=1\Leftrightarrow x=3\)

b) \(8x^3+12x^2+6x-26=0\)

\(\Leftrightarrow8x^3+12x^2+6x+1-27=0\)

\(\Leftrightarrow\left(2x+1\right)^3=27\)

\(\Leftrightarrow2x+1=3\Leftrightarrow x=1\)

30 tháng 1

Ta có : \(x^2-2x-1=0 \)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow \)\(\left[\begin{array}{} x-1=\sqrt{2}\\ x-1=-\sqrt{2} \end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
          =\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016} {(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016} {x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
         =\(\dfrac{2016}{12x + 2016}\)
         =\(\dfrac{2016}{12(x+1)+2004}\)
         =\(\dfrac{168}{x+1+167}\)
         =\(\left[\begin{array}{} \dfrac{168}{\sqrt{2}+167}\\ \dfrac{168}{-\sqrt{2}+167} \end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x \) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.

12 tháng 12 2023

a: \(x^2+12x+36=0\) 

=>\(x^2+2\cdot x\cdot6+6^2=0\)

=>\(\left(x+6\right)^2=0\)

=>x+6=0

=>x=-6

b: \(4x^2-4x+1=0\)

=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)

=>\(\left(2x-1\right)^2=0\)

=>2x-1=0

=>2x=1

=>x=1/2

c: \(x^3+6x^2+12x+8=0\)

=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)

=>\(\left(x+2\right)^3=0\)

=>x+2=0

=>x=-2