K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2023

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

\(\Rightarrow\Delta SBC\) vuông tại B

b. \(\left\{{}\begin{matrix}SA\perp BD\\BD\perp SC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp AC\)

\(\Rightarrow\widehat{BCA}=\widehat{ABD}\) (góc có cạnh tương ứng vuông góc)

\(\Rightarrow AD=AB.tan\widehat{ABD}=AB.\dfrac{AB}{BC}=\dfrac{a}{2}\)

c. Theo c/m câu a ta có \(BC\perp\left(SAB\right)\), mà \(AD||BC\Rightarrow AD\perp\left(SAB\right)\)

\(\Rightarrow AD\perp BM\)

Mà \(BM\perp DE\) (do DE là đường cao ứng với BM)

\(\Rightarrow BM\perp\left(ADE\right)\Rightarrow BM\perp AE\)

Áp dụng hệ thức lượng trong tam giác vuông ABM:

\(AE=\dfrac{AM.AB}{\sqrt{AM^2+AB^2}}=\dfrac{ax}{\sqrt{a^2+x^2}}\)

Pitago tam giác vuông ADE:

\(DE^2=AE^2+AD^2=\dfrac{a^2x^2}{a^2+x^2}+\dfrac{a^2}{4}\)

Do \(AD=\dfrac{a}{2}\) không đổi nên DE max, min tương ứng khi AE max, min

Hiển nhiên \(AE\ge0\Rightarrow AE_{min}=0\) khi \(x=0\) khi đó DE min

\(AE^2=\dfrac{a^2x^2}{a^2+x^2}\le\dfrac{a^2x^2}{2ax}=\dfrac{ax}{2}\le\dfrac{a^2}{2}\)

\(\Rightarrow AE_{max}\) khi \(x=3\)

NV
10 tháng 3 2023

loading...

NV
22 tháng 3 2022

Ta có:

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

b.

Do \(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{a\sqrt{2}}{a\sqrt{2}}=1\)

\(\Rightarrow\widehat{SCA}=45^0\)

NV
22 tháng 3 2022

undefined

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
5 tháng 10 2019

Đáp án D

Dựng 

Dựng 

Khi đó Cx cắt AB tại E và AK tại I suy ra BI là đường trung bình của ∆AEK ( Do BD qua trung điểm O của AC)

Ta có: 

Do 

21 tháng 3 2018

NV
29 tháng 4 2021

Bạn kiểm tra lại đề,

1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)

2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)

29 tháng 4 2021

Nguyễn Việt Lâm

e xin loi a

ABCD là hình thang vuông tại A và D

còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau

anh giup em vs ah

10 tháng 4 2018

29 tháng 11 2018

Chọn A

Do \(\left(SC;\left(ABCD\right)\right)=45^0;SA\perp\left(ABCD\right)\)

nên \(\left\{{}\begin{matrix}\left(SC;AC\right)=45^0\\AS\perp AC\end{matrix}\right.\)\(\Rightarrow AS=AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow V_{S.ABCD}=\dfrac{1}{6}.\left(AD+BC\right).AB.AS\)

\(=\dfrac{1}{6}\left(2a+a\right).a.a\sqrt{2}=\dfrac{\sqrt{2}}{2}a^3\)