K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2023

Gọi ƯCLN của 6n+7 và 2n+1 là : a

\(\Rightarrow6n+7⋮a\) và \(2n+1⋮a\)

\(\Rightarrow3\left(2n+1\right)⋮a\)

\(\Rightarrow(6n+7-6n-3)⋮a\)

\(\Rightarrow4⋮a\)

\(\Rightarrow a\inƯ\left(4\right)\in\left(1;-1;2;-2;4;-4\right)\)

mà \(2n+1\) là số lẻ nên không có ước là : (2;-2;4;-4)

\(\Rightarrow a\in\left(1;-1\right)\)

\(\Rightarrow A\) tối giản

 

10 tháng 1 2019

giả sử 2n+1/6n+1 là phân số chưa tối giản thì 2n+1 và 6n+1 còn chia hết cho d (d khác 1)

=>(2n+1)-(6n+1) chia hết cho d

6n+3-6n-1 chia hết cho d

2 chia hết cho d

=>d thuộc Ư(2)=1;2

mà 2n+1 là số lẻ nên ko có ước 2

=>d=1

mà d khác 1 nên ko có trường hợp trên

=>phân số 2n+1/6n+1 chưa tối giản

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

a. Gọi $d$ là ƯCLN $(n+3, 2n+7)$

$\Rightarrow n+3\vdots d$ và $2n+7\vdots d$

$\Rightarrow 2n+7-2(n+3)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$

Vậy $n+3, 2n+7$ nguyên tố cùng nhau, nên $\frac{n+3}{2n+7}$ tối giản.

b.

Gọi $d$ là ƯCLN $(4n+6, 6n+7)$

$\Rightarrow 4n+6\vdots d; 6n+7\vdots d$

$\Rightarrow 3(4n+6)-2(6n+7)\vdots d$
$\Rightarrow 4\vdots d$

Mặt khác, vì $6n+7\vdots d$ mà $6n+7$ lẻ nên $d$ lẻ.

$\Rightarrow d=1$

$\Rightarrow \frac{4n+6}{6n+7}$ tối giản.

19 tháng 2 2018

Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)

\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản 

19 tháng 2 2018

a        Gọi ước chung của 2n+5 và 3n+7 là n

        2n+5 ⋮ x=>6n+15⋮x 

       3n+7  ⋮ x =>6n+14 ⋮x

        =>1 chia hết x=> x thuộc ước của 1

          Vậy phân số đó tối giản

b       6n-14 chia hết x

         2n-5 chia hết x=>6n-15 chia hết x

        =>1 chia hết x=> x thuộc ước của 1

        Vậy phân số đó tối giản

11 tháng 4 2016

gọi d là ƯCLN của 6n+2 và 2n+1

=> 6n+2 chia hết cho d và 2n+1 chia hết cho d

=>6n+2 chia hết cho d và 3(2n+1) = 6n+3 chia hết cho d

=>(6n+3) - (6n+2) chia hết cho d

=> 6n+ 3 - 6n -2 chia hết cho d=>1 chia hết cho d => d = 1

=> ƯCLN(6n+2;2n+1) = 1=>6n+2/2n+1 là phân số tối giản => đpcm

2 tháng 8 2018

Đặt d là ước chung lớn nhất của 2n+1 và 6n+5

Ta có \(2n+1⋮d\Rightarrow3.\left(2n+1\right)⋮d\Rightarrow6n+3\)

Mặt khác \(6n+5⋮d\)

Do đó \(6n+5-6n-3⋮d\Rightarrow2⋮d\Rightarrow d=\left\{1;2\right\}\)

Mặt khác 6n+5 là số lẻ nên d = 1

Khi đó 6n + 5 và 2n +1 là hai số nguyên tố cùng nhau hay phân số A tối giản

2 tháng 8 2018

Thử vài trường hợp là ra ngay !!!

25 tháng 4 2017

de the nay a ?????

2n+\(\frac{90}{6n}\)+70

25 tháng 4 2017

Đề của người ta là: \(\frac{2n+90}{6n+70}\)đó thưa anh 

2 tháng 4 2016

c)

goi D LA U (6N+7;2N+1)

  1. =>6N+7 5CHIAHET CHO D

=>2N+1 CHIA HET CHO D

=>1(6N+7) CHIA HET CHO D

=>3(2N+6) CHIA HETS CHO D

=>[6N+7)-(6N+6)] CHIA HET CHO D

=>D CHIA HET CHO D

=>D=1

=>6N+7/2N+1 LA P/S TOI GIAN

2 tháng 4 2016

Gọi ƯCLN 6n+7 và 2n+1 là d

6n+7 chia hết d 

2n+1 chia hết d suy ra 6n+3 chia hết d

suy ra (6n+7)-(6n+3)=4 chia hết d

suy ra d bằng 1 ; 4. mà 2n+1 là số lẻ nên d=1 . nên p/s dố tối giản

2 tháng 4 2016

goi d LA U (6N+7/2N+1)

=>6N+7 CHIA HET CHO D=> 2(6N+14) CHIA HET CHO D

=>2N+1 CHIA HET CHO D=>6(2N+6) ................

=>1 CHIA HET CHO D

=>D=1

=>\(\frac{6N+7}{2N+1}\) LA P/S TOI GIAN

K NHR