K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

Gọi ƯCLN 6n+7 và 2n+1 là d

6n+7 chia hết d 

2n+1 chia hết d suy ra 6n+3 chia hết d

suy ra (6n+7)-(6n+3)=4 chia hết d

suy ra d bằng 1 ; 4. mà 2n+1 là số lẻ nên d=1 . nên p/s dố tối giản

2 tháng 4 2016

goi d LA U (6N+7/2N+1)

=>6N+7 CHIA HET CHO D=> 2(6N+14) CHIA HET CHO D

=>2N+1 CHIA HET CHO D=>6(2N+6) ................

=>1 CHIA HET CHO D

=>D=1

=>\(\frac{6N+7}{2N+1}\) LA P/S TOI GIAN

K NHR

19 tháng 5 2019

Gọi \(ƯCLN\)\((2n+1,6n+7)=d\)

Ta có : \(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}6(2n+1)⋮d\\2(6n+7)⋮d\end{cases}}\)

Làm nốt nhé :v

19 tháng 5 2019

Gọi ( 2n+1 , 6n+7 )=d

=>\(\hept{\begin{cases}2n+1⋮d\\6n+7⋮d\end{cases}}\)

===>\(\hept{\begin{cases}6\cdot\left(2n+1\right)⋮d\\2\cdot\left(6n+7\right)⋮d\end{cases}}\)

=>\(\hept{\begin{cases}12n+6⋮d\\12n+14⋮d\end{cases}}\)

<=>(12n+14 - 12n+6) \(⋮\)d

<=>8 \(⋮\)d

=> d  thuộc ước của 8.

Bạn tự cm d=1 nhé!

~ Chúc bạn hok tốt ~

7 tháng 4 2019

đợi chút nha

7 tháng 4 2019

a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)

Để A nguyên thì 4 phải chia hết cho 2n+1

=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}

Mà 2n + 1 là số lẻ

=> 2n + 1 \(\varepsilon\){-1;1}

=> 2n \(\varepsilon\){-2;0}

=> n \(\varepsilon\){-1;0}

Vậy:...

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

21 tháng 10 2015

vào câu hỏi tương tự  dựa theo cách lm  để giải nhé 

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

24 tháng 2 2017

a)gọi d thộc ƯC ( 2n+5,3n+7)

=> 2n+5chia hết cho d              6n+15chia hết cho d

                                    <=>                                      <=> 6n+15-6n-14c/h cho d<=> 1 c/h cho d<=> d=1;-1

và 3n+7 chia hết cho d            và 6n+14 c/h cho d

=>A là p số tối giản

b) làm tương tự a). ở đây, nhân 2n-5 lên 3 lần rồi lấy 6n-14-kết q vừa tìm đc thì ta đc d=1

24 tháng 2 2017

a)gọi d là ƯCLN(2n+5;3n+7)

=>2n+5​ chia hết cho d và 3n+7 chia hết cho d

=>(2n+5)-(3n+7) chia hết cho d

hay 3(2n+5)-2(3n+7) chia hết cho d

=>d=1

Vì ƯCLN=1. Nên phân số 2n+5/3n+7 là phân số tối giản 

b) làm tương tự như câu a nhé bạn

7 tháng 5 2017

A lớn hơn

7 tháng 5 2017

tớ làm cho cậu câu B thôi đó ủng hộ thì tớ làm tiếp

B)gọi ƯCLN của n+1 và 2n+3 là d

ta có:

n+1\(⋮\)d=> (n+1)*2\(⋮\)d => 2n+2\(⋮\)d => (2n+3)-(2n+2)\(⋮\)d => 1\(⋮\)d

vậy p/s trên là PSTG (điều phải chứng minh )

28 tháng 3 2019

Gọi UCLN (4n+7; 2n+3) là d

ta có: 4n + 7 chia hết cho d

2n + 3 chia hết cho d => 4n + 6 chia hết cho d

=> 4n + 7 - 4n - 6 chia hết cho d

=> 1 chia hết cho d

=> (4n+7)/(2n+3) là p/s tối giản

28 tháng 3 2019

Muốn chứng tỏ phân số \(\frac{4n+7}{2n+3}\)là phân số tối giản thì ta phải chứng minh được ( 4n+7; 2n + 3 ) = 1

Gọi d là ƯCLN( 4n + 7; 2n + 3 ). Ta có:

\(\hept{\begin{cases}4n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+7⋮d\\4n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

=> Phân số \(\frac{4n+7}{2n+3}\)tối giản. ( ĐPCM )