cần gấp , giúp mình với:
\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{465}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)
\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)
\(x\) + 1 = 16
\(x\) = 16 - 1
\(x\) = 15
Ta có:
\(\dfrac{1}{3}\times\dfrac{12}{12}=\dfrac{12}{36};\)
\(\dfrac{1}{6}\times\dfrac{6}{6}=\dfrac{6}{36};\)
\(\dfrac{1}{10}\times\dfrac{3}{3}=\dfrac{3}{30};\)
\(\dfrac{1}{15}\times\dfrac{2}{2}=\dfrac{2}{30};\)
\(\dfrac{1}{21}\times\dfrac{4}{4}=\dfrac{4}{84};\)
\(\dfrac{1}{28}\times\dfrac{3}{3}=\dfrac{3}{84};\)
\(A=\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{3}{30}+\dfrac{2}{30}+\dfrac{4}{84}+\dfrac{3}{84}+\dfrac{1}{36}\)
\(=\left(\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{1}{36}\right)+\left(\dfrac{3}{30}+\dfrac{2}{30}\right)+\left(\dfrac{4}{84}+\dfrac{3}{84}\right)\)
\(=\dfrac{19}{36}+\dfrac{5}{30}+\dfrac{7}{84}\)
\(=\dfrac{19}{36}+\dfrac{1}{6}+\dfrac{1}{12}\)
\(=\dfrac{19}{36}+\dfrac{6}{36}+\dfrac{3}{36}\)
\(=\dfrac{28}{36}=\dfrac{7}{9}\)
Vậy: \(A=\dfrac{7}{9}\)
=2(1/12+1/30+...+1/132)
=2(1/3-1/4+1/5-1/6+1/6-1/7+...+1/11-1/12)
=2(1/12+1/5-1/12)
=2*1/5=2/5
\(\sqrt{112}-7\sqrt{\dfrac{1}{7}}-14\sqrt{\dfrac{1}{28}}-\dfrac{21}{\sqrt{7}}\)
Các bạn giúp mình với
\(\sqrt{112}-7\sqrt{\dfrac{1}{7}}-14\sqrt{\dfrac{1}{28}}-\dfrac{21}{\sqrt{7}}=\sqrt{16.7}-\sqrt{49.\dfrac{1}{7}}-2.\sqrt{\dfrac{1}{4}.49.\dfrac{1}{7}}-\dfrac{3.7}{\sqrt{7}}\)
\(=4\sqrt{7}-\sqrt{7}-2.\dfrac{1}{2}\sqrt{7}-3\sqrt{7}=4\sqrt{7}-\sqrt{7}-\sqrt{7}-3\sqrt{7}=-\sqrt{7}\)
\(\dfrac{1}{3.7}\)+\(\dfrac{1}{7.4}\) +\(\dfrac{1}{4.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
\(\dfrac{2}{2.3.7}\)+\(\dfrac{2}{2.7.4}\) +\(\dfrac{2}{2.4.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
\(\dfrac{2}{6.7}\)+\(\dfrac{2}{7.8}\) +\(\dfrac{2}{8.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6.7}\) +\(\dfrac{1}{7.8}\) +\(\dfrac{1}{8.9}\) +...+\(\dfrac{1}{x\left(x+1\right)}\)) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6}\) -\(\dfrac{1}{7}\) +\(\dfrac{1}{7}\) -\(\dfrac{1}{8}\) +\(\dfrac{1}{8}\) -\(\dfrac{1}{9}\) +...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) ) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6}\) -\(\dfrac{1}{x+1}\) )=\(\dfrac{2}{9}\)
\(\dfrac{1}{6}\)-\(\dfrac{1}{x+1}\) =\(\dfrac{2}{9}\) : 2
\(\dfrac{1}{6}\)-\(\dfrac{1}{x+1}\) =\(\dfrac{1}{9}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{6}\) -\(\dfrac{1}{9}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{18}\)
x+1=18
x = 18-1
x =17
Vậy x =17
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)
=>\(B=\dfrac{32+16+6+2+1}{64}\)
=>\(B=\dfrac{63}{64}\)
Ta có:
\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\)
=> \(\dfrac{1}{2}A=\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\right)\text{}\)
\(=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{420}\)
\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{20.21}\)
\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{20}-\dfrac{1}{21}\)
\(=\dfrac{1}{6}-\dfrac{1}{21}\)
\(=\dfrac{5}{42}\)
Vậy \(A=\dfrac{5}{42}\)
\(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
M = 1/21 + 1/28+1/36+...+1/465
= 2/42+2/56+2/72+...+2/930
= 2.( 1/6.7 + 1/7.8 + 1/ 7.9 + ... + 1/30.31)
= 2.( 1/6-1/7+1/7-1/8+...+1/30-1/31)
= 2.(1/6 - 1/31) = 2.25/186 = 25/92