Cho đa thức:
P(x) = x17 - 2000.x16 + 2000.x15 - 2000.x14 + .... + 2000.x - 1
Tính giá trị của P(1999).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức:
P(x) = x17 - 2000.x16 + 2000.x15 - 2000.x14 + .... + 2000.x - 1
Tính giá trị của P(1999).
Ta có: x=1999
nên x+1=2020
Ta có: \(f\left(x\right)=x^{17}-2020\cdot x^{16}+2020\cdot x^{15}-2020\cdot x^{14}+...+2000x-1\)
\(=x^{17}-x^{16}\left(x+1\right)+x^{15}\left(x+1\right)-x^{14}\left(x+1\right)+...+x\left(x+1\right)-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...+x^2+x-1\)
\(=x-1\)
\(=1999-1=1998\)
f(x) = x^17 - 2000x^16 + 2000x^15 - 2000x^14 + ... + 2000x - 1
⇒ f(1999) = 1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1
⇒ 1999. f(1999) = 1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999
⇒ 1999. f(1999) + f(1999) =(1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999) + (1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1)
⇒ 2000. f(1999) = 19992−1
⇔ f(1999) =1999^2-1/2000(ghi dưới dạng phân số nha)
tham khẢO
( X x 0,25 + 1999) x 2000=( 53+1999) x 2000
( X x 0,25 + 1999) = ( 53+1999) x 2000 : 2000
( X x 0,25 + 1999) = ( 53+1999)
( X x 0,25 + 1999) = 2052
X x 0,25 = 2052 -1999
X x 0,25 = 53
X = 53 : 0,25
X = 212
Với số nguyên dương n, ta có:
\(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}=\frac{n^2+2n+1+n^2+n^2\left(n+1\right)^2}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{\left(n+1\right)^2}=\frac{\left[n\left(n+1\right)+1\right]^2}{\left(n+1\right)^2}=\left(\frac{n^2+n+1}{n+1}\right)^2\)
\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
\(\Rightarrow P=\left(1999+\frac{1}{2000}\right)+\frac{1999}{2000}=1999+1=2000\)
Cách ez hđt lp 8 nhé
\(P=\sqrt{\left(1+2.1999+1999^2\right)-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{\left(1+1999\right)^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{2000^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{\left(2000-\frac{1999}{2000}\right)^2}+\frac{1999}{2000}\)
\(P=\left|2000-\frac{1999}{2000}\right|+\frac{1999}{2000}=2000-\frac{1999}{2000}+\frac{1999}{2000}=2000\)
...
( x * 0,25 + 1999 ) * 2000 = ( 53 + 1999 ) * 2000
=> x * 0,25 = 53
=> x = 53 : 0,25
=> x = 212
( 53 + 1999 ) * 2000 = 4104000
x = (4104000 : 2000 - 1999 ) : 0,25
x = 53 : 0,25
x = 212