Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2000 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
\(=\sqrt{\frac{a^4-2a^3+3a^2-2a+1}{a^2}}+\frac{a-1}{a}\)
\(=\frac{a^2-a+1}{a}+\frac{a-1}{a}=a=2000\)
\(P=\sqrt{1+1999^2+\dfrac{1999^2}{2000^2}}+\dfrac{1999}{2000}=\sqrt{\dfrac{2000^2+1999^2.2000^2+1999^2}{2000^2}}+\dfrac{1999}{2000}=\dfrac{\sqrt{2000^2+\left(2000-1\right)^2.2000^2+1999^2}}{2000}+\dfrac{1999}{2000}=\dfrac{\sqrt{2000^2+\left(2000^2-2.2000+1\right).2000^2+1999^2}+1999}{2000}=\dfrac{\sqrt{2000^2+2000^4-2.2000.2000^2+2000^2+1999^2}+1999}{2000}=\dfrac{\sqrt{2000^4+2.2000^2-2.\left(1999+1\right).2000^2+1999^2}+1999}{2000}=\dfrac{\sqrt{2000^4+2.2000^2-2.1999.2000^2-2.2000^2+1999^2}+1999}{2000}=\dfrac{\sqrt{2000^4-2.1999.2000^2+1999^2}+1999}{2000}=\dfrac{\sqrt{\left(2000^2-1999\right)^2}+1999}{2000}=\dfrac{2000^2-1999+1999}{2000}=\dfrac{2000^2}{2000}=2000\)
\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}\)
\(=\sqrt{1^2+a^2+\left(\dfrac{a}{a+1}\right)^2+2a-\dfrac{2a}{a+1}-\dfrac{2a^2}{a+1}}\)
(vì \(2a-\dfrac{2a}{a+1}-\dfrac{2a^2}{a+1}=\dfrac{2a^2+2a-2a-2a^2}{a+1}=0\))
\(=\sqrt{\left(1+a-\dfrac{a}{a+1}\right)^2}\)
\(=\left|1+a-\dfrac{a}{a+1}\right|\)
Áp dụng vào P, ta có:
\(P=\sqrt{1+1999^2+\dfrac{1999^2}{2000^2}}+\dfrac{1999}{2000}\)
\(=\left|1+1999-\dfrac{1999}{2000}\right|+\dfrac{1999}{2000}\)
\(=2000\)
D = \(\frac{1-\sqrt{2}}{1-2}\)+\(\frac{\sqrt{2}-\sqrt{3}}{2-3}\)+\(\frac{\sqrt{3}-\sqrt{4}}{3-4}\)+...+\(\frac{\sqrt{1999}-\sqrt{2000}}{1999-2000}\) (liên hợp)
= -1 +\(\sqrt{2}\) -\(\sqrt{2}\) +\(\sqrt{3}\) -\(\sqrt{3}\) +\(\sqrt{4}\) -... -\(\sqrt{1999}\) +\(\sqrt{2000}\)
= \(\sqrt{2000}\)-1
Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)
\(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ
Vậy A là số hữu tỉ
1) Có nhận xét sau:
\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)
\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)
2) Có nhận xét sau:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức
có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)
Xét : \(\left(\frac{1}{k-1}-\frac{1}{k}+1\right)^2=\frac{1}{k^2}+\frac{1}{\left(k-1\right)^2}+1+2\left(-\frac{1}{k\left(k-1\right)}-\frac{1}{k}+\frac{1}{k-1}\right)\)
\(=\frac{1}{k^2}+\frac{1}{\left(k-1\right)^2}+1\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|\frac{1}{k-1}-\frac{1}{k}+1\right|\)với k thuộc N* , k > 1
Áp dụng : \(\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{1999^2}+\frac{1}{2000^2}}\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(=1998+\frac{1}{2}+-\frac{1}{2000}\)
Với số nguyên dương n, ta có:
\(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}=\frac{n^2+2n+1+n^2+n^2\left(n+1\right)^2}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{\left(n+1\right)^2}=\frac{\left[n\left(n+1\right)+1\right]^2}{\left(n+1\right)^2}=\left(\frac{n^2+n+1}{n+1}\right)^2\)
\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
\(\Rightarrow P=\left(1999+\frac{1}{2000}\right)+\frac{1999}{2000}=1999+1=2000\)
Cách ez hđt lp 8 nhé
\(P=\sqrt{\left(1+2.1999+1999^2\right)-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{\left(1+1999\right)^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{2000^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{\left(2000-\frac{1999}{2000}\right)^2}+\frac{1999}{2000}\)
\(P=\left|2000-\frac{1999}{2000}\right|+\frac{1999}{2000}=2000-\frac{1999}{2000}+\frac{1999}{2000}=2000\)
...