Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=1999
nên x+1=2020
Ta có: \(f\left(x\right)=x^{17}-2020\cdot x^{16}+2020\cdot x^{15}-2020\cdot x^{14}+...+2000x-1\)
\(=x^{17}-x^{16}\left(x+1\right)+x^{15}\left(x+1\right)-x^{14}\left(x+1\right)+...+x\left(x+1\right)-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-x^{15}-x^{14}+...+x^2+x-1\)
\(=x-1\)
\(=1999-1=1998\)
f(x) = x^17 - 2000x^16 + 2000x^15 - 2000x^14 + ... + 2000x - 1
⇒ f(1999) = 1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1
⇒ 1999. f(1999) = 1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999
⇒ 1999. f(1999) + f(1999) =(1999^18 - 1999.1999^17 + 2000.1999^16 - 2000.1999^15 + ... + 2000.1999^2 - 1999) + (1999^17 - 2000.1999^16 + 2000.1999^15 - 2000.1999^14 + ... + 2000.1999 - 1)
⇒ 2000. f(1999) = 19992−1
⇔ f(1999) =1999^2-1/2000(ghi dưới dạng phân số nha)
\(P=x^3+x^2y-5x^2-x^2y-xy^2+5xy+3\left(x+y\right)+2000\\ =x^2\left(x+y-5\right)-xy\left(x+y-5\right)+3\left(x+y-5\right)+2015\\ =x^2\left(5-5\right)-xy\left(5-5\right)+3\left(5-5\right)+2015\\ =2015\)
`P = x^3 + x^2 - 5x^2 - x^2y + xy^2 + 5xy + 3(x+y) + 2000`
`P = x^2(x+y) - (x+y)x^2 - xy(x+y) + (x+y)xy + 3(x+y) + 2000`
`P = 0 + 0 + 3.5 + 2000`
`P = 2015`