K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

4m - 4 + 16 = 0

4m - 4 + 4 . 4 = 0

4 ( m - 4 + 4 ) = 0 

m - 4 + 4 = 0

m - 4 = -4

m = -4 + 4

m = 0 

1 tháng 5 2021

Lời giải:

  1. Tập xác định của phương trình

  2. Biến đổi vế trái của phương trình

  3. Phương trình thu được sau khi biến đổi

  4. Rút gọn thừa số chung

  5. Đơn giản biểu thức

  6. Rút gọn

  7. Lời giải thu được

5 tháng 6 2021

\(x^2-\left(m+4\right)x+4m=0\) (1)

a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)

Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy nghiệm còn lại là 4

b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)

Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)

\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)

Theo viet có: \(x_1+x_2=m+4\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)

\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)

\(\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)

Vậy...

5 tháng 6 2021

Cảm ơn nha

13 tháng 4 2019

\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)

Vậy pt luôn có 2 nghiệm phân biệt.

Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

a: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-2\right)>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+8>=0\)

=>-8m>=-12

hay m<=3/2

b: \(\Leftrightarrow\left(4m-4\right)^2-4\cdot\left(-2\right)\cdot\left(4m-6\right)>0\)

\(\Leftrightarrow16m^2-32m+16+32m-48>0\)

\(\Leftrightarrow16m^2>32\)

hay \(\left[{}\begin{matrix}m>\sqrt{2}\\m< -\sqrt{2}\end{matrix}\right.\)

22 tháng 1 2022

 \(a,\Delta'=\left[-\left(m-1\right)\right]^2-1\left(m^2-2\right)\\ =m^2-2m+1-m^2+2\\ =-2m+3\)

Để pt có nghiệm thì \(\Delta'\ge0\) hay

\(\Leftrightarrow-2m+3\ge0\\ \Leftrightarrow m\le\dfrac{3}{2}\)

\(b,\Delta'=\left[-2\left(m-1\right)\right]^2-\left(-2\right)\left(4m-6\right)\\ =4\left(m^2-2m+1\right)+2\left(4m-6\right)\\ =4m^2-8m+4+8m-12\\ =4m^2-8\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) hay

\(4m^2-8>0\\ \Leftrightarrow\left[{}\begin{matrix}x< -\sqrt{2}\\x>\sqrt{2}\end{matrix}\right.\)

30 tháng 10 2023

a: \(\dfrac{1}{m-2}\cdot\sqrt{m^2-4m+4}\)

\(=\dfrac{1}{m-2}\cdot\sqrt{\left(m-2\right)^2}\)

\(=\dfrac{1}{m-2}\cdot\left|m-2\right|\)

\(=\dfrac{1}{m-2}\cdot\left(m-2\right)\left(m>2\right)\)

=1

b: \(2\sqrt{x}=14\)

=>\(\sqrt{x}=7\)

=>x=49

\(x+2\sqrt{x}+1=4\)

=>\(\left(\sqrt{x}+1\right)^2=4\)

=>\(\left[{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-3\left(loại\right)\end{matrix}\right.\)

=>x=1(nhận)

28 tháng 11 2019

Đặt  t = x 2 + 2 x + 4 = x + 1 2 + 3 ≥ 3 , phương trình trở thành

t 2 - 2 m t + 4 m - 1 = 0   2

Nhận xét: Ứng với mỗi nghiệm  t > 3  của phương trình (2) cho ta hai nghiệm của phương trình (1). Do đó phương trình (1) có đúng hai nghiệm khi phương trình (2) có đúng một nghiệm  t > 3

⇔ Δ ' = 0 x = − b 2 a > 3 Δ ' > 0 a   f ( 3 ) < 0 ⇔ m 2 − 4 m + 1 = 0 m > 3 m 2 − 4 m + 1 > 0 1. 3 2 − 2 m .3 + 4 m − 1 < 0

Đáp án cần chọn là: D

15 tháng 3 2016

\(\Delta=b^2-4ac=\left(m+4\right)^2-4\left(4m-2\right)=m^2+8m+16-16m+8=m^2-8m+24=\left(m-4\right)^2+8\)

15 tháng 3 2016

đúng ko 

hình như ko rùi

\(\text{Δ}=\left(4m+1\right)^2-8\left(m-4\right)\)

\(=16m^2+8m+1-8m+32\)

\(=16m^2+33>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Ta có: \(\left|x_1-x_2\right|=17\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=17\)

\(\Leftrightarrow\sqrt{\left(4m+1\right)^2-4\cdot2\cdot\left(m-4\right)}=17\)

\(\Leftrightarrow\sqrt{16m^2+8m+1-8m+32}=17\)

\(\Leftrightarrow16m^2+33=289\)

=>m=4 hoặc m=-4