Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m = 5 ta có pt: (100 - 25)x - 5 = 10
<=> 75 x = 15 <=> x = 1/5
b) (4m2 - 25) - 5 = 2m
<=> 4m2 - 2m - 30 = 0
<=> 4m2 + 10m - 12m - 30 = 0
<=> (m - 3)(4m + 10) = 0 <=> \(\orbr{\begin{cases}m=3\\m=-\frac{5}{2}\end{cases}}\)
a) với m = 5, ta có:
(4.52 - 25)x - 5 = 2.5
<=> (100 - 25)x - 5 = 10
<=> 75x - 5 = 10
<=> 75x = 10 + 5
<=> 75x = 15
<=> x = 15/75 = 1/5
b) (1.4m2 - 25).1 - 5 = 2.m
<=> (4m2 - 25) - 5 = 2m
<=> 4m2 - 25 - 5 = 2m
<=> 4m2 - 30 = 2m
<=> 4m2 - 30 - 2m = 0
<=> 2(2m2 - 15 - m) = 0
<=> 2(2m2 + 5m - 6m - 15) = 0
<=> 2[m(2m + 5) - 3(2m + 5)] = 0
<=> 2(2m + 5)(m - 3) = 0
<=> 2m + 5 = 0 hoặc m - 3 = 0
<=> m = -5/2 hoặc m = 3
a: Thay x=-3 vào A, ta được:
\(A=\dfrac{-3-5}{-3-4}=\dfrac{8}{7}\)
b: \(B=\dfrac{2}{x+5}+\dfrac{x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{2x-10+x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3}{x-5}\)
c: Để M là số nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;7;1\right\}\)
a) Ta có: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x-5\right)\left(3x+3\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b) Ta có: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-2\left(x+2\right)\cdot4\cdot\left(3x-1\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)
c) Ta có: \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+14\right)\left(3x-4\right)\)
d) Ta có: \(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)
\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)
\(=\left(x+5\right)\left(5x-3\right)\)
e) Ta có: \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)
\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)
\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)
\(=\left(4x+7\right)\left(8x+11\right)\)
f) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=-\left[\left(b-c\right)^2-a^2\right]\cdot\left[\left(b+c\right)^2-a^2\right]\)
\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
g) Ta có: \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left[a\left(x-y\right)+b\left(y-x\right)\right]\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right]\left(x+y\right)\left(a+b\right)\)
\(=\left(x-y\right)\left(a-b\right)\left(x+y\right)\left(a+b\right)\)
h) Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a^2+2ab+b^2\right)-1\right]\left[\left(a^2-2ab+b^2\right)-9\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
i) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(x^2-9\right)\)
\(=-12\left(x+3\right)^2\cdot\left(x-3\right)\)
k) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
l) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-5^2\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
m) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x-y\right)^2-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
Câu 13 : Phương trình m(x-1) =5-(m-1)x vô nghiệm nếu :
A/ m=1/2 B/ m=1/4 C/ m=3/2 D/ m=1
=>-(x2+8x-5)
=>-(x2 +2.4x+16-5-16)
=>-[(x+4)2-21]
=>-(x+4)2+21
do -(x+4)2 luôn > hoặc= 0 với mọi x
=>-(x+4)2+21 >/21
=>A>/21
=>GTLN của A=21 Khi x+4=0
x=-4
a) Để (m-4)x+2-m=0 là phương trình bậc nhất ẩn x thì \(m-4\ne0\)
hay \(m\ne4\)
b) Để \(\left(m^2-4\right)x-m=0\) là phương trình bậc nhất ẩn x thì \(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
hay \(m\notin\left\{2;-2\right\}\)
c) Để \(\left(m-1\right)x^2-6x+8=0\) là phương trình bậc nhất ẩn x thì \(m-1=0\)
hay m=1
d) Để \(\dfrac{m-2}{m-1}x+5=0\) là phương trình bậc nhất ẩn x thì \(\dfrac{m-2}{m-1}\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ne1\end{matrix}\right.\)