Tìm x nguyên sao cho \(\sqrt{x-4\sqrt{x-19}}\)nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cần chứng minh: x + 19; 2x + 10; 3x + 13; 4x + 37 là số chính phương
Thật vậy: Đặt x + 19 = a2 ; 4x + 37 = b2 (g/s a; b \(\ge\)0)
=> \(4a^2-b^2=39\)
<=> (2a + b ).(2a - b) = 3.13 = 1.39
Vì 2a + b > 2a - b. Nên ta có các trường hợp sau
+) 3a + b = 13; 2a - b = 3 => 2a = 8; b = 5 => a = 4; b = 5 => x = - 3
Thay vào ta có \(\sqrt{x+19},\sqrt{2x+10},\sqrt{3x+13},\sqrt{4x+37}\)là các số nguyên
=> x = - 3 thỏa mãn
+) 3a + b = 39; 2a - b = 1 => 2a = 20; b = 19 => a = 10; b = 19 => x = 81
Thay vào ta có \(\sqrt{2x+10}\)không là số nguyên
=> x = 81 loại
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
b: Để A>2 thì A-2>0
=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)
TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)
=>\(2< \sqrt{x}< \dfrac{5}{2}\)
=>4<x<25/4
c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1\right\}\)
=>\(x\in\left\{1;9\right\}\)
kết hợp ĐKXĐ, ta được: x=9
a) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(A=\dfrac{x-4}{\sqrt{x}+2}\), ta được:
\(A=\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\left(\dfrac{1}{4}-\dfrac{16}{4}\right):\left(\dfrac{1}{2}+2\right)=\dfrac{-15}{4}:\dfrac{5}{2}\)
\(\Leftrightarrow A=\dfrac{-15}{4}\cdot\dfrac{2}{5}=\dfrac{-30}{20}=\dfrac{-3}{2}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(A=\dfrac{-3}{2}\)
b) Ta có: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-1}{2-\sqrt{x}}-\dfrac{9-x}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{x-4}\)
\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2+x+2\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4+9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Thay x = \(\dfrac{1}{4}\)vào bt A ta có: A= \(\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\dfrac{-15}{4}:\dfrac{5}{2}=\dfrac{-3}{2}\)
Vậy x = \(\dfrac{1}{4}\)vào bt A nhận giá trị là -3/2
b)
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
Lời giải:
\(\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3(\sqrt{x}-3)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)
Để biểu thức đã cho nguyên thì $\frac{9}{\sqrt{x}-3}$ nguyên. Đặt $\frac{9}{\sqrt{x}-3}=t$ với $t$ nguyên.
$\sqrt{x}=\frac{9}{t}+3$
Do $\sqrt{x}\geq 0$ nên $\frac{9}{t}+3\geq 0\Leftrightarrow \frac{3(3+t)}{t}\geq 0$
$\Leftrightarrow t>0$ hoặc $t\leq -3$
$x=(\frac{9}{t}+3)^2$ với $t$ là số nguyên thỏa mãn $t>0$ hoặc $t\leq -3$
A =\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
A = \(\dfrac{3\sqrt{x}-3+3}{\sqrt{x}-3}\)= 3 -\(\dfrac{3}{\sqrt{x}-3}\)
Để A nguyên thì : 3 \(⋮\)\(\sqrt{x}\) - 3
\(\sqrt{x}\) - 3 \(\in\) \(\left\{-3;-1;1;3\right\}\)
\(\sqrt{x}\) - 3 = -3 \(\Rightarrow\) \(x\) = 0
\(\sqrt{x}\) - 3 = -1 \(\Rightarrow\) \(x\) = 4
\(\sqrt{x}\) - 3 = 1 \(\Rightarrow\) \(x\) = 16
\(\sqrt{x}\) - 3 = 3 \(\Rightarrow\) \(x\)= 36
kết luận \(x\)\(\in\) \(\left\{0;4;16;36\right\}\)