\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

b: Để A>2 thì A-2>0

=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)

TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)

=>\(2< \sqrt{x}< \dfrac{5}{2}\)

=>4<x<25/4

c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{1;9\right\}\)

kết hợp ĐKXĐ, ta được: x=9

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

 

 

5 tháng 11 2017

\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)

\(A=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{1}{\sqrt{x}-2}\)

vậy \(A=\frac{1}{\sqrt{x}-2}\)

A có nghĩa khi \(\sqrt{x}-2>0\)

                    \(\Leftrightarrow\sqrt{x}=2\)

                      \(\Leftrightarrow x=4\)

vậy \(x=4\) thì A có nghĩa

b) theo ý a) \(A=\frac{1}{\sqrt{x}-2}\)

theo bài ra \(A>2\) \(\Leftrightarrow\frac{1}{\sqrt{x}-2}>2\)

                                     \(\Leftrightarrow\frac{1}{\sqrt{x}-2}-2>0\)

                                      \(\Leftrightarrow\frac{1}{\sqrt{x}-2}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

                                      \(\Leftrightarrow\frac{1-2\sqrt{x}+4}{\sqrt{x}-2}>0\)

                                      \(\Leftrightarrow\frac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)

\(\Rightarrow\hept{\begin{cases}5-2\sqrt{x}>0\\\sqrt{x}-2>0\end{cases}}\)  hoặc \(\hept{\begin{cases}5-2\sqrt{x}< 0\\\sqrt{x}-2< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-2\sqrt{x}>-5\\\sqrt{x}>2\end{cases}}\) hoặc \(\hept{\begin{cases}-2\sqrt{x}< -5\\\sqrt{x}< 2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< \frac{25}{4}\\x>4\end{cases}}\)hoặc \(\hept{\begin{cases}x>\frac{25}{4}\\x< 4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\notin\varnothing\end{cases}}\)

vậy \(4< x< \frac{25}{4}\) thì \(A>2\)

5 tháng 11 2017

mình sửa lại chút chỗ dòng thứ 2 từ dưới lên

\(\Rightarrow\orbr{\begin{cases}4< x< \frac{25}{4}\\x\in\varnothing\end{cases}}\)

mải quá nên mình ấn mhầm cho mk xin lỗi

11 tháng 8 2020

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4

Ta có: P = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(x+6\sqrt{x}+\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

P = \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)

b) Với x \(\ge\)0 và x \(\ne\)4, ta có:

P > -1 <=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}>-1\)

<=> \(-\frac{\sqrt{x}+6}{\sqrt{x}-2}+1>0\)

<=> \(\frac{\sqrt{x}-2-\sqrt{x}-6}{\sqrt{x}-2}>0\)

<=> \(\frac{-8}{\sqrt{x}-2}>0\)

Do -8 < 0 => \(\sqrt{x}-2< 0\) <=> \(\sqrt{x}< 2\)<=> \(x< 4\)

mà x \(\ge0\) => 0 \(\le\)\(< \)4

c)Với x \(\ge\)0 và x \(\ne\)4

Để P \(\in\)Z <=> -8 \(-8⋮\sqrt{x}-2\)

<=> \(\sqrt{x}-2\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Do \(\sqrt{x}\ge0\) <=> \(\sqrt{x}-2\ge-2\) => \(\sqrt{x}-2\in\left\{-2;-1;1;2;4;8\right\}\)

Lập bảng: 

\(\sqrt{x}-2\)      -2 -1 1 2 4 8
   x    0  1 9 16 36 100

Vậy ....

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

24 tháng 6 2021

a) đk: \(x\ne0;4\)\(x>0\)

P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Để P < \(\dfrac{1}{2}\)

<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)

<=> \(\sqrt{x}< 2\)

<=> x < 4

<=> 0 < x < 4

24 tháng 6 2021

thanks.

a: ĐKXĐ: x>0; x<>1

b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)

c: A nguyên

=>x-1 thuộc {1;-1;2;-2}

=>x thuộc {2;3}