K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

a) Vì \(\Delta ABD\)\(\Delta ACE\) đều (gt).

=> \(\left\{{}\begin{matrix}AD=AB\\AC=AE\\\widehat{DAB}=\widehat{EAC}=60^0\end{matrix}\right.\) (tính chất tam giác đều).

\(\widehat{DAB}=\widehat{EAC}\left(cmt\right)\)

=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\)

=> \(\widehat{DAC}=\widehat{BAE}.\)

Xét 2 \(\Delta\) \(ADC\)\(ABE\) có:

\(AD=AB\left(cmt\right)\)

\(\widehat{DAC}=\widehat{BAE}\left(cmt\right)\)

\(AC=AE\left(cmt\right)\)

=> \(\Delta ADC=\Delta ABE\left(c-g-c\right)\)

=> \(DC=BE\) (2 cạnh tương ứng).

Chúc bạn học tốt!

7 tháng 1 2020
https://i.imgur.com/QOwPDxP.jpg
12 tháng 4 2019

A B C P E D Q F R

            ( Hình ko chính xác đâu nha )

                                CM

Vẽ về phía ngoài tam giác ABC dựng tam giác đều ACQ và tam giác RBC cân tại R sao cho \(\widehat{BRC}=120^0\)

\(\Rightarrow\hept{\begin{cases}DB=DC\\RB=RC\end{cases}}\)

\(\Rightarrow DR\)là đường trung trực BC ( tc)

          mà tam giác DBC cân tại D ( gt)

\(\Rightarrow DR\)là phân giác của \(\widehat{BDC}\left(tc\right)\)

\(\Rightarrow\widehat{BDR}=\frac{1}{2}\widehat{BDC}=60^0\)

Ta có: \(\widehat{DBR}=\widehat{DBC}+\widehat{RBC}\left(h.ve\right)\)

                      \(=30^0+30^0\)

                      \(=60^0\)mà BD = BR (cmt)

\(\Rightarrow\Delta BDR\)là tam giác đều ( dấu hiệu nhận biết )

Vì \(\Delta APB\)đều ( gt)

\(\Rightarrow BP=BA\left(đn\right)\)

Ta có: \(\widehat{PBD}=\widehat{PBA}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(1\right)\)

Lại có: \(\widehat{ABR}=\widehat{DBR}+\widehat{ABD}\left(h.ve\right)\)

                       \(=60^0+\widehat{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{PBD}=\widehat{ABR}\)

 Xét \(\Delta BPD\)và \(\Delta BAR\)có:

       \(\hept{\begin{cases}\widehat{PBD}=\widehat{ABR}\left(cmt\right)\\PB=BA\left(cmt\right)\\BD=BR\left(cmt\right)\end{cases}\Rightarrow\Delta BPD=\Delta BAR\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}DP=RA\left(2canhtuongung\right)\left(3\right)\\\widehat{BDP}=\widehat{BRA}\left(2goctuongung\right)\end{cases}}\)

CM tương tự ta có \(\Delta CRA=\Delta CDQ\left(c-g-c\right)\)( bạn tự CM nhé nó tương tự )

\(\Rightarrow\hept{\begin{cases}DQ=RA\left(2canhtuongung\right)\left(4\right)\\\widehat{QDC}=\widehat{ARC}\left(2goctuongung\right)\end{cases}}\)

Từ (3) và (4) \(\Rightarrow DP=DQ=RA\)

Ta có: \(\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{PDB}+\widehat{QDC}\right)\)

   mà \(\widehat{BDP}=\widehat{BRA};\widehat{QDC}=\widehat{ARC}\left(cmt\right)\)

\(\Rightarrow\widehat{PDQ}=360^0-\widehat{BDC}-\left(\widehat{BRA}+\widehat{CRA}\right)\)

                \(=360^0-\widehat{BDC}-\widehat{BRC}\)

                \(=360^0-120^0-120^0\)

               \(=120^0\)

       

(Chỗ này mình hướng dẫn bạn tự làm típ  nhé)

từ đó tam giác DPQ cân tại D và góc PDQ=1200 . Kết hợp với giả thiết tam giác DEF cân tại D có góc EDF=1200

\(\Rightarrow\Delta DFP=\Delta DEQ\left(c-g-c\right)\)

\(\Rightarrow EQ=FP\left(2canhtuongung\right)\)

Dễ thấy EQ=EC nên PF=CE.

     

12 tháng 4 2019

mình hiểu rồi thanks bạn nhiều 

30 tháng 11 2016

giúp e vs các a cj Phương An

soyeon_Tiểubàng giải

Hoàng Lê Bảo Ngọc

Silver bullet

Nguyễn Huy Tú

Nguyễn Như Nam

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

22 tháng 6 2016

a) ta có : tam giác MAB đều => \(\widehat{MAB}=60\)

Tam giác ACN đều :=> \(\widehat{CAN}=60\)

ta có \(\widehat{MAN}=\widehat{BAC}+\widehat{MAB}+\widehat{CAN}=60+60+60=180\)

=> M,N,A thẳng hằng

 

22 tháng 6 2016

A B C 1 2 3

a)A1+A2+A3=60+60+60=180=> MAN thảng hàng.

b)2tam giac ANB; ACM có: gócNAB =góc CAM=120

AN=AC; AB=AM(GT)

=> Tam giac ANB=tam giác ACM=> BN=CM

c) không rõ đề