K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

a) xét tam giác ABD và tam giác HBD ta có :

góc ABD = góc HBD ( BD là phân giác góc B ) 

BD là cạnh chung 

=> tam giác ABD = tam giác HBD (ch - gn)

b) tam giác ABH có :

AB=BH ( tam giác ABD= t/g HBD )

=> tam giác ABD cân tại B 

mà BD là phân giác của góc B 

=> BD đồng thời là đường trung tuyến và là đường cao của tam giác ABH 

=> BD là đường trung trực của tam giác ABH hay BD là đường trung trực của AH 

c)  vì AH// AC (gt) 

=> IH//AD ( D thuộc AC) 

=> góc IAH = góc AHD ( so le trong ) 

=> DH// AI 

mà DH vuông góc với BH 

=> AI vuông góc với BH ( đpcm) 

12 tháng 1 2019

A B C 9 25 0 20 0 D E F H I

Giải: a) Xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}\)= 1800

=> \(\widehat{A}\)= 1800 - \(\widehat{B}\)\(\widehat{C}\)= 1800 - 250 - 200 = 1350

b) Ta có : góc EAB + góc BAD = 1800

=> góc EAB = 1800 - BAD = 1800 - 900 = 900

Xét t/giác ABE và t/giác ABD

có AE = AD (gt)

  góc EAB = góc CAB = 900 (cmt)

AB : chung

=> t/giác ABE = t/giác ABD (c.g.c)

b) Ta có: t/giác ABE = t/giác ABD (cmt)

=> BE = BD (hai cạnh tương ứng)

=> góc EBA = góc ABD (hai góc tương ứng)

Xét t/giác BHE và t/giác BHD

có BE = BD (cmt)

  góc EBH = góc HBD (cmt)

 BH : chung

=> t/giác BHE = t/giác BHD (c.g.c)

d) Gọi giao điểm của DH và BE là I

Ta có : t/giác BHE = t/giác BHD (cmt)

=> HE = HD (hai cạnh tương ứng)

=> góc BEH = góc HDB (hai góc tương ứng)

Xét t/giác EIH và t/giác DFH

có góc BEH = góc HDB (cmt)

   HE = HD (cmt)

  góc IHE = góc FHD (đối đỉnh)

=> t/giác EIH = t/giác DFH (g.c.g)

=> góc EIH = góc HFC (hai góc tương ứng)

Mà góc HFC = 900 (EF \(\perp\)BD)

=> góc EIH = 900

=> DI \(\perp\)EB => DH \(\perp\)EB