K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

loading...

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

25 tháng 1 2021

x + \(\dfrac{3}{x}\) + 5 ≥ 2\(\sqrt{x.\dfrac{3}{x}}\) + 5 = \(2\sqrt{3}+5\)

Vậy GTNN của biểu thức là \(2\sqrt{3}+5\)

Dấu "=" xảy ra ⇔ \(x=\dfrac{3}{x}\) ⇔\(x=\pm\sqrt{3}\)

22 tháng 2 2016

thay từng x vô giải ra tìm GTNN;GTLN

24 tháng 4 2021

\(A=\dfrac{x-3}{x-5}\)

\(A=\dfrac{x-5}{x-5}+\dfrac{2}{x-5}\)

\(A=1+\dfrac{2}{x-5}\)

Để A đạt GTNN thì \(x-5\) đạt giá trị âm lớn nhất.

Do đó: \(x-5=-1\Rightarrow x=4\)

Vậy \(x=4\) thì A đạt GTNN.

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$B=|x-\frac{1}{3}|+|x-\frac{5}{3}|=|x-\frac{1}{3}|+|\frac{5}{3}-x|$

$\geq |x-\frac{1}{3}+\frac{5}{3}-x|=\frac{4}{3}$
Vậy GTNN của $B$ là $\frac{4}{3}$. Giá trị này đạt tại $(x-\frac{1}{3})(\frac{5}{3}-x)\geq 0$

$\Leftrightarrow \frac{1}{3}\leq x\leq \frac{5}{3}$

21 tháng 6 2017

Ta có : \(\left|x-\frac{2}{5}\right|\ge0;\left|x-\frac{3}{5}\right|\ge0\forall x\in R\)

=> \(\left|x-\frac{2}{5}\right|+\left|x-\frac{3}{5}\right|\ge0\)

Vì x ko thể đồng thời nhận hai giá trị 

Nên GTNN của biểu thức là : \(\frac{1}{5}\) khi x = \(\frac{2}{5},\frac{3}{5}\)