Cho tam giác ABC cân tại A, lấy điểm E trên cạnh BC, lấy F trên tia đối của tia CB, lấy D trên tia đối của tia CA. CMR:
a) AB > AE
b) AB < AF
c) BD > BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath
1. a) Vì tam giác ABC cân tại A =>B=ACD Mà ACD=ECN(đối đỉnh) =>B=ECN Vì AB=AC(tam giác ABC cân tại A) Mà AC=IC =>AB=IC Xét tam giác ABD và tam giác ICE có: AB=IC(c/m trên) B=ECN(c/m trên) BD=CE(gt) =>tam giác ABD=tam giác ICE(c.g.c) 2. Xét tam giác BMD và tam giác CEN có: BDM=CNE(=90 độ) BD=CE(gt) B=ECN(c/m trên) =>tam giác BDM=tam giác CEN(g.c.g) =>BM=CN(2 cạnh tương ứng)
Bài 8:
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
b: ta có: ΔABD=ΔACE
nên \(\widehat{ADB}=\widehat{AEC}\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath
a: góc FEB+góc FBE=45+45=90 độ
=>EF vuông góc BC
b: ΔDFC vuông tại F có góc C=45 độ
nên ΔDFC vuông cân tại F
=>FD=FC
c: Xét ΔBEC có
EF,CA là đường cao
EF cắt CA tại D
=>D là trực tâm
=>BD vuông góc CE
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF