K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

A = x2+2y

    = (x2+2x+1) + 2(y2+2y+1) -2x-4y-3

   = (x+1)+ 2(y+1)- 2(x+2y) -3

   = (x+1)2 + 2(y+1)2 -5

 \(\Rightarrow A_{min}=\)\(-5\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) 

Ai kết bạn với mink mink k cho hứa đó please

17 tháng 2 2017

mình kết bn rùi đó k cho mình đi hihi

21 tháng 3 2018

Thay x=1-2y vào A , được A= (1-2y)2+2y2=1-4y+4y2+2y2

= 6y2-4y+1

MinA=\(\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{3};y=\dfrac{1}{3}\)

29 tháng 7 2018

a. \(x+2y=1\Rightarrow x=1-2y\). Thay vào ta được:

\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1=6\left(y^2-\dfrac{2}{3}y+\dfrac{1}{3}\right)=6\left(y^2-2.y.\dfrac{1}{3}+\dfrac{1}{9}\right)+\dfrac{4}{3}=\left(y-\dfrac{1}{3}\right)^2+\dfrac{4}{3}\ge\dfrac{4}{3}\)\(\Rightarrow Min_A=\dfrac{4}{3}\Leftrightarrow x=y=\dfrac{1}{3}\)

b. \(4x-3y=7\Rightarrow x=\dfrac{7+3y}{4}\) Thay vào ta được:

\(2.\left(\dfrac{7+3y}{4}\right)^2+5.y^2=2.\left(\dfrac{49+42y+9y^2}{16}\right)+5y^2=\dfrac{98+84y+18y^2+80y^2}{16}=\dfrac{98y^2+84y+98}{16}=\dfrac{98\left(y^2+\dfrac{6}{7}y+\dfrac{9}{49}\right)+80}{16}=\dfrac{98\left(y+\dfrac{3}{7}\right)^2+80}{16}\ge5\)\(\Rightarrow Min_B=5\Leftrightarrow x=\dfrac{10}{7};y=-\dfrac{3}{7}\)

c. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a^3 + b^3. - Bất đẳng thức và cực trị - Diễn đàn Toán học

AH
Akai Haruma
Giáo viên
18 tháng 12 2023

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

14 tháng 12 2016

Nguồn : diendantoanhoc.net

Áp dụng BĐT Cauchy Schwarz có :

\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)

\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)

Vậy ...

31 tháng 12 2018

Akai Haruma

31 tháng 12 2018

bạn kt hộ mình nhé

https://hoc24.vn/hoi-dap/question/647384.html

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

19 tháng 5 2016

Ta có: x + 2y = 1 <=> x = 1 - 2y. 

Thay vào P ta có: 

P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3

Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3

Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3

12 tháng 7 2023

Mày nhìn cái chóa j