Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai kết bạn với mink mink k cho hứa đó please
a. \(x+2y=1\Rightarrow x=1-2y\). Thay vào ta được:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1=6\left(y^2-\dfrac{2}{3}y+\dfrac{1}{3}\right)=6\left(y^2-2.y.\dfrac{1}{3}+\dfrac{1}{9}\right)+\dfrac{4}{3}=\left(y-\dfrac{1}{3}\right)^2+\dfrac{4}{3}\ge\dfrac{4}{3}\)\(\Rightarrow Min_A=\dfrac{4}{3}\Leftrightarrow x=y=\dfrac{1}{3}\)
b. \(4x-3y=7\Rightarrow x=\dfrac{7+3y}{4}\) Thay vào ta được:
\(2.\left(\dfrac{7+3y}{4}\right)^2+5.y^2=2.\left(\dfrac{49+42y+9y^2}{16}\right)+5y^2=\dfrac{98+84y+18y^2+80y^2}{16}=\dfrac{98y^2+84y+98}{16}=\dfrac{98\left(y^2+\dfrac{6}{7}y+\dfrac{9}{49}\right)+80}{16}=\dfrac{98\left(y+\dfrac{3}{7}\right)^2+80}{16}\ge5\)\(\Rightarrow Min_B=5\Leftrightarrow x=\dfrac{10}{7};y=-\dfrac{3}{7}\)
c. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a^3 + b^3. - Bất đẳng thức và cực trị - Diễn đàn Toán học
Nguồn : diendantoanhoc.net
Áp dụng BĐT Cauchy Schwarz có :
\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)
\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)
Vậy ...
Ta có: x + 2y = 1 <=> x = 1 - 2y.
Thay vào P ta có:
P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3
Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3
Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3
1)
ta có: x+2y=1 => x=1-2y
thay vào bt, ta có:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1\\ A=6\left(x-\dfrac{4}{2.6}\right)^2+\dfrac{4.6.1-\left(-4\right)^2}{4a}\ge\dfrac{4.6.1-\left(-4\right)^2}{46}=\dfrac{1}{3}\)
A đạt min khi x-1/3=0 => x=1/3
vậy MIN A=1/3 tại x=1/3
áp dụng bđt cô si cho 4 số ta có
\(x^4+\dfrac{1}{16}+\dfrac{1}{16}+\dfrac{1}{16}\ge4\sqrt[4]{x^4.\dfrac{1}{16}.\dfrac{1}{16}.\dfrac{1}{16}}\)
⇔ \(x^4+\dfrac{3}{16}\ge x.\dfrac{1}{2}\)
cmtt ta có
\(y^4+\dfrac{3}{16}\ge y\dfrac{1}{2}\)
cộng các vế của bđt trên ta có
\(x^4+y^4+\dfrac{3}{8}\ge\dfrac{1}{2}\left(x+y\right)\)
⇔ \(C+\dfrac{3}{8}\ge\dfrac{1}{2}\)
⇔ \(C\ge\dfrac{1}{8}\)
minC=\(\dfrac{1}{8}\) khi x=y=\(\dfrac{1}{2}\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
ta có x2+2y2=x2+y2+y2
áp dụng bất đẳng thức bunhia copxki ta có
(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2
3(x2+2y2) > hoặc = (x+2y)2
3(x2+2y2) > hoặc = 12
3(x2+2y2) > hoặc = 1
x2+2y2 > hoặc = 1/3
vậy gtnn của x2+2y2 là 1/3
Thay x=1-2y vào A , được A= (1-2y)2+2y2=1-4y+4y2+2y2
= 6y2-4y+1
MinA=\(\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{3};y=\dfrac{1}{3}\)