Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BDT AM-GM \(=>x+y\ge2\sqrt{xy}=>\left(x+y\right)^2\ge4xy\left(1\right)\)
mà \(x+y\le1=>\left(x+y\right)^2\le1\left(2\right)\)
(1)(2)\(=>4xy\le\left(x+y\right)^2\le1=>4xy\le1=>xy\le\dfrac{1}{4}\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\ge2\sqrt{\dfrac{1+x^2y^2}{xy}}=2\sqrt{\dfrac{1}{xy}+xy}\)
\(=2\sqrt{\dfrac{1}{xy}+16xy-15xy}=2\sqrt{2\sqrt{16}-\dfrac{15}{4}}=\sqrt{17}\)
dấu"=" xảy ra<=>\(x=y=\dfrac{1}{2}\)
\(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)
Ta có:
\(A\ge\dfrac{2}{\sqrt{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\dfrac{1}{xy}+xy}=2\sqrt{\left(xy+\dfrac{1}{16xy}\right)+\dfrac{15}{16}.\dfrac{1}{xy}}\)
\(A\ge2\sqrt{2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4}=\sqrt{17}\)
\(A_{min}=\sqrt{17}\) khi \(x=y=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT AM-GM:
$M\geq 2\sqrt{\frac{1}{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\frac{x^2y^2+1}{xy}}$
$=2\sqrt{xy+\frac{1}{xy}}$
Áp dụng BĐT AM-GM tiếp:
$1\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}$
$xy+\frac{1}{xy}=(xy+\frac{1}{16xy})+\frac{15}{16xy}$
$\geq 2\sqrt{xy.\frac{1}{16xy}}+\frac{15}{16xy}$
$\geq 2\sqrt{\frac{1}{16}}+\frac{15}{16.\frac{1}{4}}=\frac{17}{4}$
$\Rightarrow M\geq 2\sqrt{\frac{17}{4}}=\sqrt{17}$
Vậy $M_{\min}=\sqrt{17}$. Giá trị này đạt tại $x=y=\frac{1}{2}$
\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)
\(xy\ge2\left(y-1\right)\ge0\Rightarrow x\ge\dfrac{2\left(y-1\right)}{y}\ge0\)
\(\Rightarrow M\ge\dfrac{\dfrac{4\left(y-1\right)^2}{y^2}+4}{y^2+1}=4.\dfrac{\left(y-1\right)^2+y^2}{y^2\left(y^2+1\right)}\)
\(\dfrac{M}{4}\ge\dfrac{2y^2-2y+1}{y^4+y^2}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{\left(2-y\right)\left(y^3+2y^2-3y+2\right)}{4\left(y^4+y^2\right)}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow M\ge1\)
Dấu "=" xảy ra khi \(y=2;x=1\)
Áp dụng bđt \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)
\(x^2+2y^2\ge\dfrac{\left(x+2y\right)^2}{2}=\dfrac{25}{2}\)
Ta có:
\(x+2y\ge2\sqrt{x2y}\)
\(\Leftrightarrow5\ge2\sqrt{2xy}\)
\(\Rightarrow25\ge4.2xy\Rightarrow xy\le\dfrac{25}{8}\)
Áp dụng bđt Cosi
\(\dfrac{1}{x}+\dfrac{24}{y}\ge2\sqrt{\dfrac{24}{xy}}\ge2\sqrt{\dfrac{24}{\dfrac{25}{8}}}=2\sqrt{\dfrac{24.8}{25}}=\dfrac{16}{5}\sqrt{3}\)
\(\Rightarrow H\ge\dfrac{16}{5}\sqrt{3}+\dfrac{25}{2}\)
Dấu bằng xảy ra khi:
\(\left\{{}\begin{matrix}x=2y\\x+2y=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)
ta có : \(H=x^2+2y^2+\dfrac{1}{x}+\dfrac{24}{y}=x^2+\dfrac{1}{x}+2y^2+\dfrac{24}{y}\)
\(\Rightarrow H\ge2\sqrt{x}+2\sqrt{48y}\) dấu "=" xảy ra khi \(x=1;y=2\)
thế lại ta có : \(H_{min}=2+8\sqrt{6}\)
vậy ....................................................................................................................
a)...........................
b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)
\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)
\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)
\(\Rightarrowđpcm\)
c) Bạn tự làm đi tới đây dễ rồi
Akai Haruma
bạn kt hộ mình nhé
https://hoc24.vn/hoi-dap/question/647384.html