K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có 

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

b)Ta có: ΔAHD=ΔAKD(cmt)

nên AH=AK(hai cạnh tương ứng) và DH=DK(hai cạnh tương ứng)

Ta có: AH=AK(cmt)

nên A nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DH=DK(cmt)

nên D nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AD là đường trung trực của HK

hay AD\(\perp\)HK(đpcm)

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: AH=AK

DH=DK

=>AD là trung trực của HK

c: Gọi M là giao của DK với AH

Xét ΔAMC có

MK,CH là đường cao

MK cắt CH tại D

=>D là trực tâm

=>AD vuông góc MC

mà AD vuông góc CE

nên C,M,E thẳng hàng

=>AH,KD,CE đồng quy tại M

12 tháng 5 2017

11 tháng 3 2021

Tam giác ABC có: góc A = 90 *
=> góc BAD + góc DAC=90*
Tam giác AHD có : góc AHD = 90*
=> góc HDA + góc HAD = 90*
mà góc DAC = góc HAD ( do AD là pg góc HAC)
=> Góc BAD = góc HDA
=> Tam giác ABD cân tại B => AB = BD
Mặt khác : c/m đc Tam giác ABH đồng dạng với tam giác CBA
=> AB ^ 2 = BH x BC
= ( BD -12) BC = (AB - 12).50
= 50AB - 600
<=> AB^2 - 50AB + 600 = 0

Cre:mạng

21 tháng 7 2017

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A, ta được:

B C 2 = A C + A B 2 ⇒ B C 2 = 15 2 + 20 2 ⇔ B C 2 = 25 2  ⇔ BC = 25( cm )

Đặt BD = x ⇒ DC = 25 - x

Áp dụng định lý Py 0 ta – go vào hai tam giác vuông AHB và AHC, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Trừ theo vế các đẳng thức ( 1 ) và ( 2 ) ta được:

15 2 - x 2 - 20 2 + ( 25 - x ) 2 = 0  ⇔ 50x = 450 ⇔ x = 9( cm )

Nên HC = 25 - 9 = 16( cm )

Thay x = 9 vào đẳng thức ( 1 ) ta có:  H A 2 = 15 2 - 9 2 = 122 ⇔ HA = 12( cm )

Áp dụng tính chất đường phân giác AD vào tam giác AHB, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường chất đường phân giác AE của tam giác ACH, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

a: \(\widehat{DAE}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{HAC}\right)=\dfrac{1}{2}\cdot90^0=45^0\)

b: Xét ΔAEH và ΔAEF có

AE chung

\(\widehat{HAE}=\widehat{FAE}\)

AH=AF

Do đó: ΔAEH=ΔAEF

c: Ta có: ΔAEH=ΔAEF

nên \(\widehat{AHE}=\widehat{AFE}=90^0\)

=>EF⊥AC

mà AC⊥AB

nên EF//AB

18 tháng 2 2022

thanks bạn nha